Heat Transfer and Fluid Flow Characteristics in a Micro Heat Exchanger Employing Warm Nanofluids for Cooling of Electronic Components

被引:3
|
作者
Mokrane, Mahdi [1 ]
Bourouis, Mahmoud [2 ]
机构
[1] Ctr Dev Energies Renouvelables CDER, Unite Dev Equipements Solaires UDES, Tipasa 42004, Algeria
[2] Univ Rovira i Virgili, Dept Mech Engn, Ave Paisos Catalans 26, Tarragona 43007, Spain
关键词
micro heat exchanger; nanofluids; cooling of electronic heating components; CFD simulation; TRANSFER ENHANCEMENT; SINGLE-PHASE; CONSTRUCTAL-THEORY; PRESSURE-DROP; MICROCHANNEL; WATER; PERFORMANCE; FRICTION; OPTIMIZATION; CHANNELS;
D O I
10.3390/en17102383
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The heat transfer enhancement and hydrodynamic characteristics of nanofluid use in a micro heat exchanger is investigated for cooling electronic components working in hot climatic conditions. The cooling fluid employed was water and TiO2 nanoparticles at mass concentrations of 1% and 5%, the Reynolds numbers ranged from 400 to 2000, and the inlet temperatures ranged between 35 degrees C and 65 degrees C. At a nanofluid inlet temperature of 55 degrees C and a nanoparticle concentration of 1%, the Nusselt number increased by 23% up to 54% as the Reynolds number varied between 400 and 2000. At a nanoparticle concentration of 5%, the percentages that correspondingly enhanced the Nusselt number were 32% and 63%. The temperature of the electronic heating component decreased by 4.6-5.2 degrees C when the nanofluid concentration was increased from 0 to 5% at a Reynolds number of 400 and a nanofluid inlet temperature of 35 degrees C. Small increments in the pressure drop of about 6% and 13% were observed at nanofluid concentrations of 1% and 5%, respectively. With nanoparticle concentrations of 1% and 5%, a Reynolds number of 2000, and a nanofluid inlet temperature of 35 degrees C, performance evaluation criterion (PEC) values of 1.36 and 1.45 were obtained. When the nanofluid inlet temperature increased to 65 degrees C, the PEC parameter decreased to 1.02-1.10 for both concentrations.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Analysis of flow and heat transfer characteristics of micro-pin fin heat sink using silver nanofluids
    Zhou MingZheng
    Xia GuoDong
    Chai Lei
    Li Jian
    Zhou LiJun
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (01) : 155 - 162
  • [42] Designing a neural network for predicting the heat transfer and pressure drop characteristics of Ag/water nanofluids in a heat exchanger
    Hemmat Esfe, Mohammad
    APPLIED THERMAL ENGINEERING, 2017, 126 : 559 - 565
  • [43] A numerical study of fluid flow and heat transfer in different microchannel heat sinks for electronic chip cooling
    Xu, Shanglong
    Hu, Guangxin
    Qin, Jie
    Yang, Yue
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (04) : 1257 - 1263
  • [44] Review on nanofluids characterization, heat transfer characteristics and applications
    Raja, M.
    Vijayan, R.
    Dineshkumar, P.
    Venkatesan, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 64 : 163 - 173
  • [45] Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger
    Mohammed, H. A.
    Bhaskaran, G.
    Shuaib, N. H.
    Saidur, R.
    SUPERLATTICES AND MICROSTRUCTURES, 2011, 50 (03) : 215 - 233
  • [46] Heat transfer characteristics and flow features of nanofluids in parallel flat minichannels
    Wang, Hongyan
    Pang, Mingxin
    Diao, Yanhua
    Zhao, Yaohua
    POWDER TECHNOLOGY, 2022, 402
  • [47] Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink
    Prajapati, Yogesh K.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 137 : 1041 - 1052
  • [48] Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review
    Al-Asadi, Mushtaq T.
    Mohammed, Hussein A.
    Wilson, Mark C. T.
    ENERGIES, 2022, 15 (03)
  • [49] A comprehensive review of heat transfer enhancement of heat exchanger, heat pipe and electronic components using graphene
    Natesan, Kapilan
    Karinka, Shashikantha
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 45
  • [50] Heat transfer and fluid flow characteristics of heat exchanger tube with multiple twisted tapes and solid rings inserts
    Singh, Vijaypal
    Chamoli, Sunil
    Kumar, Manoj
    Kumar, Alok
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2016, 102 : 156 - 168