Design strategy of high-entropy perovskite energy-storage ceramics: A review

被引:41
|
作者
Ning, Yating [1 ]
Pu, Yongping [1 ]
Wu, Chunhui [1 ]
Chen, Zhemin [1 ]
Zhang, Xuqing [1 ]
Zhang, Lei [1 ]
Wang, Bo [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; Capacitors; High-entropy ceramics; Component design strategy; Relaxor ferroelectrics; RARE-EARTH; PERFORMANCE; DENSITY; STABILITY;
D O I
10.1016/j.jeurceramsoc.2024.02.040
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
With the increasing demand for high energy density and reliable dielectric capacitors in the field of power electronics, the research and manufacture of ceramic capacitor materials face significant challenges. At present, the traditional design ideas of dielectric ceramic materials have gradually formalized, and the system is complex and similar, whether it can design dielectric ceramic materials with high performance from a new viewpoint and explore the underlying mechanism remains a great challenge. This paper is based on ceramic capacitors with high energy storage performance, a series of high -entropy perovskite oxide ceramics designed by the concept of "entropy engineering" in the past five years are reviewed. The relationship between microstructure and macroscopic energy storage performance of materials is discussed based on the four effects of high -entropy ceramics. We predict that "entropy engineering" will be a successful strategy to break through the bottleneck of dielectric materials with high energy storage performance. This review guides the custom design of composition -structure -properties in high -entropy energy storage ceramics.
引用
收藏
页码:4831 / 4843
页数:13
相关论文
共 50 条
  • [21] Optimized energy storage performances via high-entropy design in KNN-based relaxor ferroelectric ceramics
    Wang, Minquan
    Lin, Ying
    Zheng, Binglong
    Yuan, Qibin
    Yang, Haibo
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [22] High-Entropy Design Toward Ultrahigh Energy Storage Density Under Moderate Electric Field in Bulk Lead-Free Ceramics
    Zhao, Hanyu
    Cao, Wenjun
    Liang, Cen
    Wang, Changyuan
    Wang, Chunchang
    Cheng, Zhenxiang
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (01)
  • [23] Enhanced energy storage properties in BNST-based lead-free relaxor ferroelectric ceramics achieved via a high-entropy strategy
    Qiao, Wenjing
    Mei, Junwen
    Bai, Mei
    Xu, Junbo
    Gao, Yangfei
    Zhu, Xiaopei
    Hu, Yanhua
    Li, Yong
    Hao, Xihong
    Lou, Xiaojie
    SCRIPTA MATERIALIA, 2024, 243
  • [24] Pyrochlore-based high-entropy ceramics for capacitive energy storage
    CHEN, Yiying
    QI, Junlei
    ZHANG, Minhao
    LUO, Zixi
    LIN, Yuan-Hua
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (07) : 1179 - 1185
  • [25] Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design
    Chen, Liang
    Deng, Shiqing
    Liu, Hui
    Wu, Jie
    Qi, He
    Chen, Jun
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] Ultrahigh energy storage capacities in high-entropy relaxor ferroelectrics
    Huang, Yunyao
    Shang, Kaili
    Yang, Yule
    Shi, Wenjing
    Zhang, Leiyang
    Laletin, Vladimir
    Shur, Vladimir
    Jing, Ruiyi
    Jin, Li
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (29) : 18224 - 18233
  • [27] Optimizing high-temperature energy storage in tungsten bronze-structured ceramics via high-entropy strategy and bandgap engineering
    Gao, Yangfei
    Song, Zizheng
    Hu, Haichao
    Mei, Junwen
    Kang, Ruirui
    Zhu, Xiaopei
    Yang, Bian
    Shao, Jinyou
    Chen, Zibin
    Li, Fei
    Zhang, Shujun
    Lou, Xiaojie
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] Enhanced capacitive energy storage and dielectric temperature stability of A-site disordered high-entropy perovskite oxides
    Ning, Yating
    Pu, Yongping
    Wu, Chunhui
    Zhou, Shiyu
    Zhang, Lei
    Zhang, Jinbo
    Zhang, Xian
    Shang, Yangchao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 145 : 66 - 73
  • [29] High-performance energy storage in BaTiO3-based oxide ceramics achieved by high-entropy engineering
    Bai, Mei
    Qiao, Wenjing
    Mei, Junwen
    Kang, Ruirui
    Gao, Yangfei
    Wu, Yida
    Hu, Yanhua
    Li, Yong
    Hao, Xihong
    Zhao, Jiantuo
    Hu, Hao
    Lou, Xiaojie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 970
  • [30] Suppressing interfacial polarization via entropy increase strategy for superior energy-storage performance of Na0.5Bi0.5TiO3-based ceramics
    Zhao, Hanyu
    Cao, Wenjun
    Han, Donghao
    Zhu, Xiyue
    Liang, Cen
    Wang, Changyuan
    Wang, Chunchang
    JOURNAL OF MATERIOMICS, 2024, 10 (04) : 947 - 955