Design strategy of high-entropy perovskite energy-storage ceramics: A review

被引:41
|
作者
Ning, Yating [1 ]
Pu, Yongping [1 ]
Wu, Chunhui [1 ]
Chen, Zhemin [1 ]
Zhang, Xuqing [1 ]
Zhang, Lei [1 ]
Wang, Bo [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; Capacitors; High-entropy ceramics; Component design strategy; Relaxor ferroelectrics; RARE-EARTH; PERFORMANCE; DENSITY; STABILITY;
D O I
10.1016/j.jeurceramsoc.2024.02.040
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
With the increasing demand for high energy density and reliable dielectric capacitors in the field of power electronics, the research and manufacture of ceramic capacitor materials face significant challenges. At present, the traditional design ideas of dielectric ceramic materials have gradually formalized, and the system is complex and similar, whether it can design dielectric ceramic materials with high performance from a new viewpoint and explore the underlying mechanism remains a great challenge. This paper is based on ceramic capacitors with high energy storage performance, a series of high -entropy perovskite oxide ceramics designed by the concept of "entropy engineering" in the past five years are reviewed. The relationship between microstructure and macroscopic energy storage performance of materials is discussed based on the four effects of high -entropy ceramics. We predict that "entropy engineering" will be a successful strategy to break through the bottleneck of dielectric materials with high energy storage performance. This review guides the custom design of composition -structure -properties in high -entropy energy storage ceramics.
引用
收藏
页码:4831 / 4843
页数:13
相关论文
共 50 条
  • [1] Novel high-entropy relaxors with ultrahigh energy-storage efficiency and density
    Ning, Yating
    Pu, Yongping
    Chen, Zhemin
    Zhang, Lei
    Wu, Chunhui
    Zhang, Xuqing
    Wang, Bo
    Zhang, Jinbo
    CHEMICAL ENGINEERING JOURNAL, 2023, 476
  • [2] Remarkable energy-storage density together with efficiency of above 92% in high-entropy ferroelectric ceramics
    Ning, Yating
    Pu, Yongping
    Zhang, Xuqing
    Chen, Zhemin
    Wu, Chunhui
    Zhang, Lei
    Wang, Bo
    Li, Xin
    MATERIALS TODAY PHYSICS, 2024, 43
  • [3] Achieving high energy storage properties in perovskite oxide via high-entropy design
    Ning, Yating
    Pu, Yongping
    Zhang, Qianwen
    Zhou, Shiyu
    Wu, Chunhui
    Zhang, Lei
    Shi, Yu
    Sun, Zixiong
    CERAMICS INTERNATIONAL, 2023, 49 (08) : 12214 - 12223
  • [4] Achieving Excellent Energy Storage Properties in Fine-Grain High-Entropy Relaxor Ferroelectric Ceramics
    Guo, Jian
    Xiao, Wenrong
    Zhang, Xiaoyu
    Zhang, Ji
    Wang, Jing
    Zhang, Guangzu
    Zhang, Shan-Tao
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (11)
  • [5] High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage
    Peng, Haonan
    Wu, Tiantian
    Liu, Zhen
    Fu, Zhengqian
    Wang, Dong
    Hao, Yanshuang
    Xu, Fangfang
    Wang, Genshui
    Chu, Junhao
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [6] The enhancement of energy storage performance in high-entropy ceramic
    Sun, Xiaofan
    Xu, Cuiping
    Ji, Peiqi
    Tang, Zheng
    Jiao, Shulin
    Lu, Yanzhou
    Zhao, Min
    Cai, Hong-Ling
    Wu, X. S.
    CERAMICS INTERNATIONAL, 2023, 49 (11) : 17091 - 17098
  • [7] Machine learning assisted composition design of high-entropy Pb-free relaxors with giant energy-storage
    Wang, Xingcheng
    Zhang, Ji
    Ma, Xingshuai
    Luo, Huajie
    Liu, Laijun
    Liu, Hui
    Chen, Jun
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [8] High-entropy perovskite ceramics: Advances in structure and properties
    Ding, Yiwen
    Ren, Keju
    Chen, Chen
    Huan, Li
    Gao, Rongli
    Deng, Xiaoling
    Chen, Gang
    Cai, Wei
    Fu, Chunlin
    Wang, Zhenhua
    Lei, Xiang
    PROCESSING AND APPLICATION OF CERAMICS, 2024, 18 (01) : 1 - 11
  • [9] Sustainable high-entropy ceramics for reversible energy storage: A short review
    Lin, Yong
    Luo, Nan
    Chamas, Mohamad
    Hu, Chunfeng
    Grasso, Salvatore
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2021, 18 (05) : 1560 - 1569
  • [10] Superior energy-storage density and ultrahigh efficiency in KNN-based ferroelectric ceramics via high-entropy design
    Huan, Yu
    Wu, Lingzhi
    Xu, Luoyuan
    Li, Peng
    Wei, Tao
    JOURNAL OF MATERIOMICS, 2025, 11 (01)