Geniposide effectively safeguards HT22 cells against Aβ-induced damage by activating mitophagy via the PINK1/Parkin signaling pathway

被引:2
|
作者
Ye, Jiaxi [1 ]
Wu, Jiaying [1 ]
Ai, Liang [1 ]
Zhu, Min [1 ]
Li, Yun [2 ]
Yin, Dong [2 ]
Huang, Qihui [1 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangzhou 510300, Peoples R China
[2] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Res Ctr Med,Guangdong Hong Kong Joint Lab RNA Med, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Guangzhou 510120, Guangdong, Peoples R China
关键词
Geniposide; Alzheimer's disease; Mitophagy; PINK1/Parkin pathway; PC12; CELLS; MITOCHONDRIA;
D O I
10.1016/j.bcp.2024.116296
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the significant involvement of amyloid-beta (A beta) peptide in its pathogenesis. Geniposide, derived from the versatile medicinal of Gardenia jasminoides , is one of the active compounds studied extensively. The objective was to explore the impact of geniposide on A beta 25-35-induced damage in HT22 cells, specifically focusing on its modulation of PINK1/Parkinmediated mitophagy. In our investigation, geniposide exhibited remarkable restorative effects by enhancing cell viability and preserving the mitochondrial membrane potential. Moreover, it effectively reduced and mitigated the oxidative stress and apoptosis rates induced by A beta 25-35 . Notably, geniposide exhibited the capacity to enhance autophagic flux, upregulate LC3II and Beclin-1 expression, and downregulate the expression of p62. Furthermore, geniposide positively influenced the expression of PINK1 and Parkin proteins, with molecular docking substantiating a strong interaction between geniposide and PINK1/Parkin proteins. Intriguingly, the beneficial outcomes of geniposide on alleviating the pronounced apoptosis rates, the overproduction of reactive oxygen species, and diminished the PINK1 and Parkin expression induced by A beta 25-35 were compromised by the mitophagy inhibitor cyclosporine A (CsA). Collectively, these findings suggested that geniposide potentially shields HT22 cells against neurodegenerative damage triggered by A beta 25-35 through the activation of mitophagy. The insights contribute valuable references to the defensive consequences against neurological damage of geniposide, thereby highlighting its potential as a therapeutic intervention in AD.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Globularifolin Exerts Anticancer Effects on Human Lung Cancer Cells Via Regulation of ROS and Suppression of PINK1/Parkin Mitophagy Pathway
    Li, Weijian
    Lin, Changqing
    Chen, Zhonghong
    PHARMACOGNOSY MAGAZINE, 2022, 18 (80) : 844 - 850
  • [42] RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria
    Michelle Tu
    Valerie P. Tan
    Justin D. Yu
    Raghav Tripathi
    Zahna Bigham
    Melissa Barlow
    Jeffrey M. Smith
    Joan Heller Brown
    Shigeki Miyamoto
    Cell Death & Differentiation, 2022, 29 : 2472 - 2486
  • [43] RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria
    Tu, MichelleZ
    Tan, Valerie P.
    Yu, Justin D.
    Tripathi, Raghav
    Bigham, Zahna
    Barlow, Melissa
    Smith, Jeffrey M.
    Brown, Joan Heller
    Miyamoto, Shigeki
    CELL DEATH AND DIFFERENTIATION, 2022, 29 (12): : 2472 - 2486
  • [44] MitoTEMPO protects against podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy
    Liu, Bihao
    Wang, Dejuan
    Cao, Yiwen
    Wu, Jianjian
    Zhou, Yuan
    Wu, Wenjia
    Wu, Junbiao
    Zhou, Jiuyao
    Qiu, Jianguang
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2022, 929
  • [45] Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy
    Hongguang Chen
    Huaying Lin
    Beibei Dong
    Yaoqi Wang
    Yonghao Yu
    Keliang Xie
    Inflammation Research, 2021, 70 : 915 - 930
  • [46] Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy
    Chen, Hongguang
    Lin, Huaying
    Dong, Beibei
    Wang, Yaoqi
    Yu, Yonghao
    Xie, Keliang
    INFLAMMATION RESEARCH, 2021, 70 (08) : 915 - 930
  • [47] Norepinephrine Attenuates Benzalkonium Chloride-Induced Dry Eye Disease by Regulating the PINK1/Parkin Mitophagy Pathway
    Zhao, Han
    Wang, Wushuang
    Yang, Yun
    Feng, Changming
    Lin, Tong
    Gong, Lan
    OCULAR IMMUNOLOGY AND INFLAMMATION, 2024,
  • [48] Canagliflozin Mediates Mitophagy Through the AMPK/PINK1/Parkin Pathway to Alleviate ISO-induced Cardiac Remodeling
    Gong, Shaolin
    Sui, Yuan
    Xiao, Mengxuan
    Fu, Daoyao
    Xiong, Zhiping
    Zhang, Liuping
    Tian, Qingshan
    Fu, Yongnan
    Xiong, Wenjun
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2024, 84 (05) : 496 - 505
  • [49] Globular adiponectin protects hepatocytes against intermittent hypoxia-induced injury via Pink1/Parkin-mediated mitophagy induction
    Wenxiao Ding
    Yanbin Dong
    Xilong Zhang
    Sleep and Breathing, 2022, 26 : 1389 - 1397
  • [50] PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB1-induced liver injury in mice
    Wang, Qi
    Jia, Fubo
    Guo, Chen
    Wang, Yuping
    Zhang, Xuliang
    Cui, Yilong
    Song, Miao
    Cao, Zheng
    Li, Yanfei
    FOOD AND CHEMICAL TOXICOLOGY, 2022, 164