Multi-scale network with attention mechanism for underwater image enhancement

被引:4
作者
Tao, Ye [1 ]
Tang, Jinhui [1 ]
Zhao, Xinwei [2 ]
Zhou, Chen [1 ]
Wang, Chong [1 ]
Zhao, Zhonglei [1 ]
机构
[1] State Key Lab Air Traff Management Syst, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, Beijing, Peoples R China
关键词
Underwater image enhancement; Data -driven methods; Attention mechanisms; Comprehensive evaluations; MODEL; RECOGNITION; LIGHT; VIEW;
D O I
10.1016/j.neucom.2024.127926
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater images suffer from severe degradation due to the complicated environments. Though numerous approaches have been proposed, accurately correcting color bias meanwhile effectively enhancing contrast is still a difficult problem. In order to address this issue, a dedicated designed Multi-scale Network with Attention mechanism (MNA) is introduced in this work. Concretely, MNA contains four key characteristics: (a) setting more convolution layers in shallow flows, (b) letting connections from high-level to adjacent low-level stream progressively, (c) simplifying dual attention mechanism embedding it in conventional residual block, (d) exploiting channel attention module to fuse multi-scale information rather than conventional summation operation. Extensive experiments demonstrate that our MNA achieves better performance than some well-recognized technologies. Meanwhile, ablation study proves the effectiveness of each component in our MNA. In addition, extended applications demonstrate the improvement of our MNA in local feature points matching and image segmentation.
引用
收藏
页数:14
相关论文
共 54 条
[1]   Color Balance and Fusion for Underwater Image Enhancement [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
De Vleeschouwer, Christophe ;
Bekaert, Philippe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :379-393
[2]  
Ancuti C, 2012, PROC CVPR IEEE, P81, DOI 10.1109/CVPR.2012.6247661
[3]   Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset [J].
Berman, Dana ;
Levy, Deborah ;
Avidan, Shai ;
Treibitz, Tali .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) :2822-2837
[4]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021, DOI [10.48550/ARXIV.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[5]   Transmission Estimation in Underwater Single Images [J].
Drews-, P., Jr. ;
do Nascimento, E. ;
Moraes, F. ;
Botelho, S. ;
Campos, M. .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :825-830
[6]   An overview of multi-modal medical image fusion [J].
Du, Jiao ;
Li, Weisheng ;
Lu, Ke ;
Xiao, Bin .
NEUROCOMPUTING, 2016, 215 :3-20
[7]   A light-weight, efficient, and general cross-modal image fusion network [J].
Fang, Aiqing ;
Zhao, Xinbo ;
Yang, Jiaqi ;
Qin, Beibei ;
Zhang, Yanning .
NEUROCOMPUTING, 2021, 463 :198-211
[8]   Single Image Haze Removal Using Dark Channel Prior [J].
He, Kaiming ;
Sun, Jian ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (12) :2341-2353
[9]   Single image dehazing based on pixel-wise transmission estimation with estimated radiance patches [J].
Hong, Soonyoung ;
Kang, Moon Gi .
NEUROCOMPUTING, 2022, 492 (545-560) :545-560
[10]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]