Pixel-associated autoencoder for hyperspectral anomaly detection

被引:9
|
作者
Xiang, Pei [1 ]
Ali, Shahzad [2 ]
Zhang, Jiajia [1 ,3 ]
Jung, Soon Ki [2 ]
Zhou, Huixin [1 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
[2] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu 41566, South Korea
[3] Univ Melbourne, Sch Math & Stat, Melbourne 3010, Australia
关键词
Anomaly detection; Autoencoder (AE); Hyperspectral image (HsI); Pixel similarity; Similarity metric; LOW-RANK; DECOMPOSITION; REPRESENTATION; DICTIONARY; GRAPH;
D O I
10.1016/j.jag.2024.103816
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Autoencoders (AEs) are central to hyperspectral anomaly detection, given their impressive efficacy. However, the current methodologies often neglect the global pixel similarity of the hyperspectral image (HsI), thereby limiting reconstruction accuracy. This study introduces an innovative pixel-associated AE approach that leverages pixel associations to augment hyperspectral anomaly detection. First, a dictionary construction methodology was introduced based on superpixel distance estimation to construct distinct dictionaries for background and local anomalies. Second, to recognize pixel similarities, the similarity metric of each pixel from the original HsI to the background dictionary and to the local anomaly dictionary was employed as the AE network input in lieu of the original HsI. Third, a dual hidden-layer feature similarity constraint network was proposed to enhance the reconstruction error of background and anomaly targets. Finally, the reconstruction error was utilized to score the anomaly target. The proposed method was benchmarked against other state-of-the-art techniques using synthetic and real HsI datasets to assess its effectiveness. The experimental results demonstrated the superior performance of the proposed method, outperforming the alternatives.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Hyperspectral anomaly detection based on adaptive weighting method combined with autoencoder and convolutional neural network
    Hou, Minkai
    Wang, Tao
    Su, Yanzhao
    Cai, Yanping
    Cao, Jiping
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (07) : 2638 - 2658
  • [32] Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder
    Wang, Shaoyu
    Wang, Xinyu
    Zhang, Liangpei
    Zhong, Yanfei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Cluster-Memory Augmented Deep Autoencoder via Optimal Transportation for Hyperspectral Anomaly Detection
    Huyan, Ning
    Zhang, Xiangrong
    Quan, Dou
    Chanussot, Jocelyn
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Hyperspectral anomaly detection via memory-augmented autoencoders
    Zhao, Zhe
    Sun, Bangyong
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1274 - 1287
  • [35] Subfeature Ensemble-Based Hyperspectral Anomaly Detection Algorithm
    Wang, Shuo
    Feng, Wei
    Quan, Yinghui
    Bao, Wenxing
    Dauphin, Gabriel
    Gao, Lianru
    Zhong, Xian
    Xing, Mengdao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5943 - 5952
  • [36] Interpretable Networks for Hyperspectral Anomaly Detection: A Deep Unfolding Solution
    Li, Chenyu
    Zhang, Bing
    Hong, Danfeng
    Yao, Jing
    Jia, Xiuping
    Plaza, Antonio
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [37] Hierarchical Sub-Pixel Anomaly Detection Framework for Hyperspectral Imagery
    Wang, Wenzheng
    Zhao, Baojun
    Feng, Fan
    Nan, Jinghong
    Li, Cheng
    SENSORS, 2018, 18 (11)
  • [38] HYPERSPECTRAL ANOMALY DETECTION BASED ON A NON-UNIFORM PARTITION OF THE PIXEL
    Lo, Edisanter
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [39] Hyperspectral Anomaly Detection Based on 3D Convolutional Autoencoder Network
    Wang Sheng-ming
    Wang Tao
    Tang Sheng-jin
    Su Yan-zhao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (04) : 1270 - 1277
  • [40] Hyperspectral Anomaly Detection Based on Chessboard Topology
    Gao, Lianru
    Sun, Xiaotong
    Sun, Xu
    Zhuang, Lina
    Du, Qian
    Zhang, Bing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61