Intelligent fault diagnosis of machinery based on hybrid deep learning with multi temporal correlation feature fusion

被引:0
|
作者
Lv, Yaqiong [1 ]
Zhang, Xiaohu [1 ]
Cheng, Yiwei [2 ]
Lee, Carman K. M. [3 ]
机构
[1] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan, Peoples R China
[2] China Univ Geosci Wuhan, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hung Hom, Hong Kong, Peoples R China
基金
国家教育部科学基金资助; 中国国家自然科学基金;
关键词
convolutional neural network; hybrid deep learning; intelligent fault diagnosis; long and short-term memory; multi temporal correlation feature fusion;
D O I
10.1002/qre.3597
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the advent of intelligent manufacturing era, higher requirements are put forward for the fault diagnosis technology of machinery. The existing data-driven approaches either rely on specialized empirical knowledge for feature analysis, or adopt single deep neural network topology structure for automatic feature extraction with compromise of certain information loss especially the time-series information's sacrifice, which both eventually affect the diagnosis accuracy. To address the issue, this paper proposes a novel multi-temporal correlation feature fusion net (MTCFF-Net) for intelligent fault diagnosis, which can capture and retain time-series fault feature information from different dimensions. MTCFF-Net contains four sub-networks, which are long and short-term memory (LSTM) sub-network, Gramian angular summation field (GASF)-GhostNet sub-network and Markov transition field (MTF)-GhostNet sub-network and feature fusion sub-network. Features of different dimensional are extracted through parallel LSTM sub-network, GASF-GhostNet sub-network and MTF-GhostNet sub-network, and then fused by feature fusion sub-network for accurate fault diagnosis. Two fault diagnosis experimental studies on bearings are implemented to validate the effectiveness and generalization of the proposed MTCFF-Net. Experimental results demonstrate that the proposed model is superior to other comparative approaches.
引用
收藏
页码:3517 / 3536
页数:20
相关论文
共 50 条
  • [1] Intelligent fault diagnosis of rotating machinery based on deep learning with feature selection
    Han, Dongying
    Liang, Kai
    Shi, Peiming
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) : 939 - 953
  • [2] A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery
    Jiang, Hongkai
    Shao, Haidong
    Chen, Xinxia
    Huang, Jiayang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3513 - 3521
  • [3] Multi-channel data fusion and intelligent fault diagnosis based on deep learning
    Guo, Yiming
    Hu, Tao
    Zhou, Yifan
    Zhao, Kunkun
    Zhang, Zhisheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (01)
  • [4] Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 9335 - 9346
  • [5] Multi-level features fusion network-based feature learning for machinery fault diagnosis
    Ye, Zhuang
    Yu, Jianbo
    APPLIED SOFT COMPUTING, 2022, 122
  • [6] Convolutional neural network intelligent fault diagnosis method for rotating machinery based on discriminant correlation analysis multi-domain feature fusion strategy
    Lan, Guisheng
    Shi, Haibo
    JOURNAL OF VIBROENGINEERING, 2024, 26 (03) : 567 - 589
  • [7] A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion
    Gong, Wenfeng
    Chen, Hui
    Zhang, Zehui
    Zhang, Meiling
    Wang, Ruihan
    Guan, Cong
    Wang, Qin
    SENSORS, 2019, 19 (07)
  • [8] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [9] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [10] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206