Architectural engineering of nanocomposite electrodes for energy storage

被引:0
|
作者
Randall, Kara A. [1 ]
Enderlin, Mirina E. [1 ]
Flouda, Paraskevi [1 ]
机构
[1] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA
关键词
QUARTZ-CRYSTAL MICROBALANCE; REDUCED GRAPHENE OXIDE; IN-SITU; SUPERCAPACITOR ELECTRODES; STRUCTURAL ENERGY; HIGH-STRENGTH; CARBON; LAYER; CAPACITANCE; SPECTROELECTROCHEMISTRY;
D O I
10.1557/s43579-024-00601-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The design of electrode architecture plays a crucial role in advancing the development of next generation energy storage devices, such as lithium-ion batteries and supercapacitors. Nevertheless, existing literature lacks a comprehensive examination of the property tradeoffs stemming from different electrode architectures. This prospective seeks to bridge this gap by focusing on the diverse nanocomposite electrode architectures. Furthermore, the challenges related to designing well-defined electrode architectures for enhanced energy storage are discussed. Finally, this review addresses the interdisciplinary nature of this field by examining the integration of advanced characterization and fabrication techniques, and machine learning methodologies for electrode optimization.Graphical abstractDesigning electrodes with controlled architecture and leveraging emerging tools such as in situ characterization, additive manufacturing methods, and machine learning facilitates the advancement of energy storage systems.
引用
收藏
页码:805 / 816
页数:12
相关论文
共 50 条
  • [21] 3D nanocomposite for energy storage
    Liu, Jun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [22] Polymer nanocomposite dielectrics for capacitive energy storage
    Yang, Minzheng
    Guo, Mengfan
    Xu, Erxiang
    Ren, Weibin
    Wang, Danyang
    Li, Sean
    Zhang, Shujun
    Nan, Ce-Wen
    Shen, Yang
    NATURE NANOTECHNOLOGY, 2024, 19 (05) : 588 - 603
  • [23] Polymer nanocomposite dielectrics for electrical energy storage
    Shen, Yang
    Zhang, Xin
    Li, Ming
    Lin, Yuanhua
    Nan, Ce-Wen
    NATIONAL SCIENCE REVIEW, 2017, 4 (01) : 23 - 25
  • [24] Augmenting the electrochemical capability of TMDCs thin film electrodes via interface engineering for energy storage applications
    Iqbal, Muhammad Zahir
    Khizar, Asma
    Khan, Sajid
    Hegazy, H. H.
    Alahmari, A. A.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 310
  • [25] Conducting Polymer Nanocomposite for Energy Storage and Energy Harvesting Systems
    Sonika, Sushil Kumar
    Verma, Sushil Kumar
    Samanta, Siddhartha
    Srivastava, Ankit Kumar
    Biswas, Sonali M.
    Alsharabi, Rim
    Rajput, Shailendra
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2022, 2022
  • [26] Mesoscale insights in porous electrodes for energy storage
    Mukherjee, Partha
    Liu, Zhixiao
    Chen, Chien-Fan
    Stein, Malcolm
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [27] Haemoglobin graphite electrodes for electrochemical energy storage
    Khati, Komal
    Mehtab, Sameena
    Zaidi, M. G. H.
    Joshi, Ila
    Rathore, Sanjeev
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10257 - 10261
  • [28] Liquid Metal Electrodes for Energy Storage Batteries
    Li, Haomiao
    Yin, Huayi
    Wang, Kangli
    Cheng, Shijie
    Jiang, Kai
    Sadoway, Donald R.
    ADVANCED ENERGY MATERIALS, 2016, 6 (14)
  • [29] Nanowire Electrodes for Electrochemical Energy Storage Devices
    Mai, Liqiang
    Tian, Xiaocong
    Xu, Xu
    Chang, Liang
    Xu, Lin
    CHEMICAL REVIEWS, 2014, 114 (23) : 11828 - 11862
  • [30] SEMICONDUCTOR ELECTRODES FOR CONVERSION AND STORAGE OF LIGHT ENERGY
    GERISCHER, H
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (03) : C129 - C129