Foundation of the time-fractional beam equation

被引:0
|
作者
Loreti, Paola [1 ]
Sforza, Daniela [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
Caputo fractional derivatives; Fractional diffusion-beam equations; Mittag-Leffler functions;
D O I
10.1016/j.aml.2024.109147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the model for fractional beam equations by making use of a modified constitutive assumption, that is the relationship between stress and strain depending on the creep compliance given by a fractional power -type function.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Quenching Phenomenon of a Time-Fractional Kawarada Equation
    Xu, Yufeng
    Wang, Zhibo
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (10):
  • [22] The Time-fractional Airy Equation on the Metric Graph
    Rakhimov, Kamoladdin
    Sobirov, Zarifboy
    Jabborov, Nasridin
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (03): : 376 - 388
  • [23] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [24] Tychonoff Solutions of the Time-Fractional Heat Equation
    Ascione, Giacomo
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [25] Uniqueness of the potential in a time-fractional diffusion equation
    Jing, Xiaohua
    Peng, Jigen
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (04): : 467 - 477
  • [26] Symmetry classification of time-fractional diffusion equation
    Naeem, I.
    Khan, M. D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 560 - 570
  • [27] Inverse problem for a time-fractional parabolic equation
    Ozbilge, Ebru
    Demir, Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 9
  • [28] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [29] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [30] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106