Foundation of the time-fractional beam equation

被引:0
|
作者
Loreti, Paola [1 ]
Sforza, Daniela [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
Caputo fractional derivatives; Fractional diffusion-beam equations; Mittag-Leffler functions;
D O I
10.1016/j.aml.2024.109147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the model for fractional beam equations by making use of a modified constitutive assumption, that is the relationship between stress and strain depending on the creep compliance given by a fractional power -type function.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [2] Inverse Problem for the Time-Fractional Euler-Bernoulli Beam Equation
    Tekin, Ibrahim
    Yang, He
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 503 - 518
  • [3] On Time-Fractional Cylindrical Nonlinear Equation
    HGAbdelwahed
    EKElShewy
    AAMahmoud
    Chinese Physics Letters, 2016, 33 (11) : 66 - 70
  • [4] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [5] On Time-Fractional Cylindrical Nonlinear Equation
    H.G.Abdelwahed
    E.K.ElShewy
    A.A.Mahmoud
    Chinese Physics Letters, 2016, (11) : 66 - 70
  • [6] On Time-Fractional Cylindrical Nonlinear Equation
    Abdelwahed, H. G.
    ElShewy, E. K.
    Mahmoud, A. A.
    CHINESE PHYSICS LETTERS, 2016, 33 (11)
  • [7] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [8] Time-fractional Schrödinger equation
    Hassan Emamirad
    Arnaud Rougirel
    Journal of Evolution Equations, 2020, 20 : 279 - 293
  • [9] Fractional exponential operators and time-fractional telegraph equation
    Alireza Ansari
    Boundary Value Problems, 2012
  • [10] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820