Gradient Probabilistic Algorithm for Compact Lithium Niobate Integrated Photonic Devices

被引:1
|
作者
Sheng, Lizhe [1 ]
Zhang, Haiting [1 ]
Zhang, Jingjing [1 ]
Tong, Yanqun [1 ]
Song, Xiaoxian [1 ]
Dai, Zijie [1 ]
Yu, Yu [2 ]
Wang, Yanan [3 ]
Gao, Zhongkun [3 ]
Guan, Shuaichen [3 ]
Guo, Kai [3 ]
Yao, Jianquan [4 ]
机构
[1] Jiangsu Univ, Inst Mirco Nano Optoelect & Terahertz Technol, Zhenjiang 212013, Peoples R China
[2] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[3] AMS Beijing, Inst Syst Engn, Beijing 100141, Peoples R China
[4] Tianjin Univ, Sch Precis Instruments & Optoelect Engn, Tianjin 300072, Peoples R China
基金
中国博士后科学基金;
关键词
inverse design; gradient probability algorithm; beam splitter; lithium niobate; INVERSE DESIGN; CRYSTALS;
D O I
10.3390/photonics11060508
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Compact photonic devices are highly desired in photonic integrated circuits. In this work, we use an efficient inverse design method to design a 50/50 beam splitter in lithium niobate integrated platforms. We employ the Gradient Probability Algorithm (GPA), which is built upon traditional gradient algorithms. The GPA utilizes the adjoint method for the comprehensive calculation of the electric field across the entire design area in a single iteration, thereby deriving the gradient of the design area. This enhancement significantly accelerates the algorithm's execution speed. The simulation results show that an ultracompact beam splitter with a footprint of 13 mu m x 4.5 mu m can be achieved in lithium niobate integrated platforms, where the insertion loss falls below 0.5 dB within the 1500 nm to 1700 nm range, thus reaching its lowest point of 0.15 dB at 1550 nm.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lithium Niobate Photonic Wires
    Hu, H.
    Buechter, D.
    Gui, L.
    Suche, H.
    Quiring, V.
    Ricken, R.
    Herrmann, H.
    Sohler, W.
    2010 23RD ANNUAL MEETING OF THE IEEE PHOTONICS SOCIETY, 2010, : 254 - 255
  • [32] Lithium niobate photonic wires
    Hu, H.
    Ricken, R.
    Sohler, W.
    OPTICS EXPRESS, 2009, 17 (26): : 24261 - 24268
  • [33] A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire
    Cai, Lutong
    Zhang, Shaomei
    Hu, Hui
    JOURNAL OF OPTICS, 2016, 18 (03)
  • [34] Ion-sliced lithium niobate thin films for active photonic devices
    Poberaj, Gorazd
    Koechlin, Manuel
    Sulser, Frederik
    Guarino, Andrea
    Hajfler, Jaroslav
    Guenter, Peter
    OPTICAL MATERIALS, 2009, 31 (07) : 1054 - 1058
  • [35] Hybrid Integration of Silicon Photonic Devices on Lithium Niobate for Optomechanical Wavelength Conversion
    Marinkovic, Igor
    Drimmer, Maxwell
    Hensen, Bas
    Groblacher, Simon
    NANO LETTERS, 2021, 21 (01) : 529 - 535
  • [36] Applications of lithium niobate and potassium titanyl phosphate integrated optic devices
    Rasch, AS
    Handrich, E
    INTEGRATED OPTICS DEVICES III, 1999, 3620 : 152 - 160
  • [37] Hybrid integrated optical devices utilizing thin films of lithium niobate
    Huang, C.H.-J.
    Integrated Ferroelectrics, 6 (1-4 pt 1):
  • [38] Integrated photonic crystal beam splitters based on thin film lithium niobate
    Zhou, Siyuan
    Chen, Guanyu
    Wu, Yu
    Lu, Jindong
    Su, Wenqu
    Liu, Yushan
    Zhang, Ziyao
    Yu, Hua
    OPTICS EXPRESS, 2025, 33 (02): : 3543 - 3553
  • [39] Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications
    Sun, Dehui
    Zhang, Yunwu
    Wang, Dongzhou
    Song, Wei
    Liu, Xiaoyan
    Pang, Jinbo
    Geng, Deqiang
    Sang, Yuanhua
    Liu, Hong
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [40] Heterogeneously Integrated Photonic Chip on Lithium Niobate Thin-Film Waveguide
    Wei, Xing
    Kesse, Samuel
    CRYSTALS, 2021, 11 (11)