Localization operators of the wavelet transform associated to the Riemann-Liouville operator

被引:9
作者
Baccar, C. [1 ]
Hamadi, N. B. [2 ]
机构
[1] Higher Inst Informat El Manar, Dept Appl Math, 2 Rue Abou Raihan El Bayrouni, Ariana 2080, Tunisia
[2] Preparatory Inst Engn Studies El Manar, Dept Math, El Manar 2, Tunis 2092, Tunisia
关键词
Riemann-Liouville operator; Fourier transform; continuous wavelet transform; localization operator; Schatten class operators; TIME-FREQUENCY LOCALIZATION; INVERSION;
D O I
10.1142/S0129167X16500361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the continuous wavelet transform T-psi associated with the Riemann-Liouville operator. Next, we investigate the localization operators for T-psi; in particular we prove that they are in the Schatten-von Neumann class.
引用
收藏
页数:20
相关论文
共 32 条
[1]   BECKNER LOGARITHMIC UNCERTAINTY PRINCIPLE FOR THE RIEMANN-LIOUVILLE OPERATOR [J].
Amri, Besma ;
Rachdi, Lakhdar T. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (09)
[2]   ON THE DETERMINATION OF A FUNCTION FROM SPHERICAL AVERAGES [J].
ANDERSSON, LE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :214-232
[3]  
[Anonymous], 1995, HARMONIC ANAL PROBAB
[4]  
[Anonymous], INT J MATH MATH SCI
[5]  
[Anonymous], 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[6]  
[Anonymous], WAVELET TRANSFORMS L
[7]  
[Anonymous], D3043032 FOA NAT DEF
[8]  
[Anonymous], 2008, J INEQUAL PURE APPL
[9]  
[Anonymous], J GEOM ANAL
[10]  
[Anonymous], INT J MATH SCI