Ship Detection in SAR Images Based on Steady CFAR Detector and Knowledge-Oriented GBDT Classifier

被引:3
作者
Sun, Shuqi [1 ]
Wang, Junfeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
SAR; ship detection; CFAR; knowledge-oriented GBDT;
D O I
10.3390/electronics13142692
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ship detection is a significant issue in remote sensing based on Synthetic Aperture Radar (SAR). This paper combines the advantages of a steady constant false alarm rate (CFAR) detector and a knowledge-oriented Gradient Boosting Decision Tree (GBDT) classifier to achieve the location and the classification of ship candidates. The steady CFAR detector smooths the image by a moving-average filter and models the probability distribution of the smoothed clutter as a Gaussian distribution. The mean and the standard deviation of the Gaussian distribution are estimated according to the left half of the histogram to remove the effect of land, ships, and other targets. From the Gaussian distribution and a preset constant false alarm rate, a threshold is obtained to segment land, ships, and other targets from the clutter. Then, a series of morphological operations are introduced to eliminate land and extract ships and other targets, and an active contour algorithm is utilized to refine ships and other targets. Finally, ships are recognized from other targets by a knowledge-oriented GBDT classifier. Based on the brain-like ship-recognition process, we change the way of the decision-tree generation and achieve a higher classification performance than the original GBDT. The results on the AIRSARShip-1.0 dataset demonstrate that this scheme has a competitive performance against deep learning, especially in the detection of offshore ships.
引用
收藏
页数:16
相关论文
共 37 条
[1]   Outliers-Robust CFAR Detector of Gaussian Clutter Based on the Truncated-Maximum-Likelihood- Estimator in SAR Imagery [J].
Ai, Jiaqiu ;
Luo, Qiwu ;
Yang, Xuezhi ;
Yin, Zhiping ;
Xu, Hao .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (05) :2039-2049
[2]   SEDE-GPS: socio-economic data enrichment based on GPS information [J].
Sperlea, Theodor ;
Fueser, Stefan ;
Boenigk, Jens ;
Heider, Dominik .
BMC BIOINFORMATICS, 2018, 19
[3]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]  
[杜兰 Du Lan], 2020, [雷达学报, Journal of Radars], V9, P34
[6]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577
[7]   Target detection in synthetic aperture radar imagery: a state-of-the-art survey [J].
El-Darymli, Khalid ;
McGuire, Peter ;
Power, Desmond ;
Moloneyb, Cecilia .
JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
[8]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[9]  
Gao Gui, 2006, Acta Electronica Sinica, V34, P1663
[10]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448