ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and Design

被引:0
作者
Notin, Pascal [1 ]
Kollasch, Aaron W. [2 ]
Ritter, Daniel [2 ]
van Niekerk, Lood [2 ]
Paul, Steffanie [2 ]
Spinner, Hansen [2 ]
Rollins, Nathan [3 ]
Shaw, Ada [4 ]
Weitzman, Ruben [1 ]
Frazer, Jonathan [2 ,5 ]
Dias, Mafalda [5 ]
Franceschi, Dinko [2 ]
Frazer, Jonathan [2 ,5 ]
Dias, Mafalda [5 ]
Franceschi, Dinko [2 ]
Orenbuch, Rose
Gal, Yarin [1 ]
Marks, Debora S. [6 ]
机构
[1] Univ Oxford, Comp Sci, Oxford, England
[2] Harvard Med Sch, Syst Biol, Boston, MA USA
[3] Seism Therapeut, Watertown, MA USA
[4] Harvard Univ, Appl Math, Cambridge, MA USA
[5] Univ Pompeu Fabra, Ctr Genom Regulat, Barcelona, Spain
[6] Harvard Med Sch, Broad Inst, Boston, MA 02115 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
英国工程与自然科学研究理事会;
关键词
AMINO-ACID SUBSTITUTIONS; MISSENSE VARIANTS; FUNCTIONAL IMPACT; SEQUENCE; MUTATIONS; PATHOGENICITY; DETERMINANTS; DISEASE; BINDING; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting the effects of mutations in proteins is critical to many applications, from understanding genetic disease to designing novel proteins that can address our most pressing challenges in climate, agriculture and healthcare. Despite a surge in machine learning-based protein models to tackle these questions, an assessment of their respective benefits is challenging due to the use of distinct, often contrived, experimental datasets, and the variable performance of models across different protein families. Addressing these challenges requires scale. To that end we introduce ProteinGym, a large-scale and holistic set of benchmarks specifically designed for protein fitness prediction and design. It encompasses both a broad collection of over 250 standardized deep mutational scanning assays, spanning millions of mutated sequences, as well as curated clinical datasets providing high-quality expert annotations about mutation effects. We devise a robust evaluation framework that combines metrics for both fitness prediction and design, factors in known limitations of the underlying experimental methods, and covers both zero-shot and supervised settings. We report the performance of a diverse set of over 70 high-performing models from various subfields (eg., alignment-based, inverse folding) into a unified benchmark suite. We open source the corresponding codebase, datasets, MSAs, structures, model predictions and develop a user-friendly website that facilitates data access and analysis.
引用
收藏
页数:49
相关论文
共 225 条
[1]   Evolving New Protein-Protein Interaction Specificity through Promiscuous Intermediates [J].
Aakre, Christopher D. ;
Herrou, Julien ;
Phung, Tuyen N. ;
Perchuk, Barrett S. ;
Crosson, Sean ;
Laub, Michael T. .
CELL, 2015, 163 (03) :594-606
[2]   Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing [J].
Adkar, Bharat V. ;
Tripathi, Arti ;
Sahoo, Anusmita ;
Bajaj, Kanika ;
Goswami, Devrishi ;
Chakrabarti, Purbani ;
Swarnkar, Mohit K. ;
Gokhale, Rajesh S. ;
Varadarajan, Raghavan .
STRUCTURE, 2012, 20 (02) :371-381
[3]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[4]   A Combined Approach Reveals a Regulatory Mechanism Coupling Src's Kinase Activity, Localization, and Phosphotransferase-Independent Functions [J].
Ahler, Ethan ;
Register, Ames C. ;
Chakraborty, Sujata ;
Fang, Linglan ;
Dieter, Emily M. ;
Sitko, Katherine A. ;
Vidadala, Rama Subba Rao ;
Trevillian, Bridget M. ;
Golkowski, Martin ;
Gelman, Hannah ;
Stephany, Jason J. ;
Rubin, Alan F. ;
Merritt, Ethan A. ;
Fowler, Douglas M. ;
Maly, Dustin J. .
MOLECULAR CELL, 2019, 74 (02) :393-+
[5]   ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants [J].
Alirezaie, Najmeh ;
Kernohan, Kristin D. ;
Hartley, Taila ;
Majewski, Jacek ;
Hocking, Toby Dylan .
AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 103 (04) :474-483
[6]   Unified rational protein engineering with sequence-based deep representation learning [J].
Alley, Ethan C. ;
Khimulya, Grigory ;
Biswas, Surojit ;
AlQuraishi, Mohammed ;
Church, George M. .
NATURE METHODS, 2019, 16 (12) :1315-+
[7]   Massively parallel characterization of CYP2C9 variant enzyme activity and abundance [J].
Amorosi, Clara J. ;
Chiasson, Melissa A. ;
McDonald, Matthew G. ;
Wong, Lai Hong ;
Sitko, Katherine A. ;
Boyle, Gabriel ;
Kowalski, John P. ;
Rettie, Allan E. ;
Fowler, Douglas M. ;
Dunham, Maitreya J. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (09) :1735-1751
[8]   Distinct patterns of mutational sensitivity for λ resistance and maltodextrin transport in Escherichia coli LamB [J].
Andrews, Bryan ;
Fields, Stanley .
MICROBIAL GENOMICS, 2020, 6 (04)
[9]   A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function [J].
Araya, Carlos L. ;
Fowler, Douglas M. ;
Chen, Wentao ;
Muniez, Ike ;
Kelly, Jeffery W. ;
Fields, Stanley .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (42) :16858-16863
[10]   Deconstruction of the Ras switching cycle through saturation mutagenesis [J].
Bandaru, Pradeep ;
Shah, Neel H. ;
Bhattacharyya, Moitrayee ;
Barton, John P. ;
Kondo, Yasushi ;
Cofsky, Joshua C. ;
Gee, Christine L. ;
Chakraborty, Arup K. ;
Kortemme, Tanja ;
Ranganathan, Rama ;
Kuriyan, John .
ELIFE, 2017, 6