Integrated model for accurate internal state estimation of polymer electrolyte membrane fuel cells

被引:3
作者
Shin, Donghoon [1 ]
Yoo, Seungryeol [2 ]
机构
[1] Korea Inst Sci & Technol KIST, Ctr Hydrogen & Fuel Cell Res, 5 Hwarang Ro,14 Gil, Seoul 02792, South Korea
[2] Korea Univ Technol & Educ, Sch Mech Engn, Cheonan 31253, South Korea
基金
新加坡国家研究基金会;
关键词
Polymer electrolyte membrane fuel cell; Fuel cell modeling; Fuel cell simulation; Fuel cell diagnosis; CATHODE CATALYST LAYER; OXYGEN-TRANSPORT; EMPIRICAL-EQUATION; FLOW CHANNEL; PEMFC; AGGLOMERATE; PERFORMANCE; PREDICTION; PARAMETERS; CURVES;
D O I
10.1016/j.egyr.2024.04.027
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study unveils a refined methodology for fuel cell behavior simulation. On the basis of three multiphysics models for the polymer membrane, catalyst layer, and mass transport, a new type of integrated model was developed. Using this model, the performance curves for various fuel cell states, charge transfer coefficient of reaction kinetics, concentration gradient inside the catalyst, and ion conductivity of the separator in the thickness direction for various fuel cell states were estimated. The proposed method can estimate microscale to macroscale fuel cell behavior with minimal computational effort while keeping the error relative to experimental data small by combining the most appropriate models to simulate each part of the fuel cell as needed.
引用
收藏
页码:4453 / 4466
页数:14
相关论文
共 53 条
[1]   Electronic modeling of a PEMFC with logarithmic amplifiers [J].
Alberro, Mikel ;
Marzo, F. F. ;
Manso, A. P. ;
Dominguez, Victoriano ;
Barranco, J. ;
Garikano, X. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (09) :3708-3718
[2]   Precise PEM fuel cell parameter extraction based on a self-consistent model and SCCSA optimization algorithm [J].
Alizadeh, Mehrzad ;
Torabi, Farschad .
ENERGY CONVERSION AND MANAGEMENT, 2021, 229
[3]   Analysis of electrochemical and thermal models and modeling techniques for polymer electrolyte membrane fuel cells [J].
Asensio, F. J. ;
San Martin, J. I. ;
Zamora, I. ;
Saldana, G. ;
Onederra, O. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113
[4]   Computational Techniques Based on Artificial Intelligence for Extracting Optimal Parameters of PEMFCs: Survey and Insights [J].
Ashraf, Hossam ;
Abdellatif, Sameh O. ;
Elkholy, Mahmoud M. ;
El-Fergany, Attia A. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (06) :3943-3972
[5]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[6]  
Becherif M, 2011, J. Hydrocarb. Mines Environ. Res, V2
[7]   An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function [J].
Calasan, Martin ;
Aleem, Shady H. E. Abdel ;
Hasanien, Hany M. ;
Alaas, Zuhair M. ;
Ali, Ziad M. .
ENERGY, 2023, 264
[8]  
Cetinbas C.K, 2014, Model. Optim. PEM fuel Cell Catal. Layer
[9]   Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles [J].
Cetinbas, Firat C. ;
Advani, Suresh G. ;
Prasad, Ajay K. .
JOURNAL OF POWER SOURCES, 2014, 250 :110-119
[10]   A Hierarchical Model for Oxygen Transport in Agglomerates in the Cathode Catalyst Layer of a Polymer-Electrolyte Fuel Cell [J].
Darling, Robert M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) :F571-F580