Few-Shot Learning with Semi-Supervised Transformers for Electronic Health Records

被引:0
|
作者
Poulain, Raphael [1 ]
Gupta, Mehak [1 ]
Beheshti, Rahmatollah [1 ]
机构
[1] Univ Delaware, Newark, DE 19716 USA
来源
MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 182 | 2022年 / 182卷
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the growing availability of Electronic Health Records (EHRs), many deep learning methods have been developed to leverage such datasets in medical prediction tasks. Notably, transformer-based architectures have proven to be highly effective for EHRs. Transformer-based architectures are generally very effective in "transferring" the acquired knowledge from very large datasets to smaller target datasets through their comprehensive "pre-training" process. However, to work efficiently, they still rely on the target datasets for the downstream tasks, and if the target dataset is (very) small, the performance of downstream models can degrade rapidly. In biomedical applications, it is common to only have access to small datasets, for instance, when studying rare diseases, invasive procedures, or using restrictive cohort selection processes. In this study, we present CEHR-GAN-BERT, a semi-supervised transformer-based architecture that leverages both in- and out-of-cohort patients to learn better patient representations in the context of few-shot learning. The proposed method opens new learning opportunities where only a few hundred samples are available. We extensively evaluate our method on four prediction tasks and three public datasets showing the ability of our model to achieve improvements upwards of 5% on all performance metrics (including AUROC and F1 Score) on the tasks that use less than 200 annotated patients during the training process(1).
引用
收藏
页码:853 / 873
页数:21
相关论文
共 50 条
  • [1] Task Cooperation for Semi-Supervised Few-Shot Learning
    Ye, Han-Jia
    Li, Xin-Chun
    Zhan, De-Chuan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10682 - 10690
  • [2] HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning
    Zhmoginov, Andrey
    Sandler, Mark
    Vladymyrov, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] Few-shot Object Detection as a Semi-supervised Learning Problem
    Bailer, Werner
    Fassold, Hannes
    19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 131 - 135
  • [4] An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning
    Wei, Xiu-Shen
    Xu, He-Yang
    Zhang, Faen
    Peng, Yuxin
    Zhou, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [5] SEMI-SUPERVISED FEW-SHOT CLASS-INCREMENTAL LEARNING
    Cui, Yawen
    Xiong, Wuti
    Tavakolian, Mohammad
    Liu, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1239 - 1243
  • [6] Semi-Supervised Few-Shot Learning with Prototypical Random Walks
    Ayyad, Ahmed
    Li, Yuchen
    Muaz, Raden
    Albarqouni, Shadi
    Elhoseiny, Mohamed
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 45 - 57
  • [7] Ensemble Transductive Propagation Network for Semi-Supervised Few-Shot Learning
    Pan, Xueling
    Li, Guohe
    Zheng, Yifeng
    ENTROPY, 2024, 26 (02)
  • [8] Learning to Self-Train for Semi-Supervised Few-Shot Classification
    Li, Xinzhe
    Sun, Qianru
    Liu, Yaoyao
    Zheng, Shibao
    Zhou, Qin
    Chua, Tat-Seng
    Schiele, Bernt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] PTN: A Poisson Transfer Network for Semi-supervised Few-shot Learning
    Huang, Huaxi
    Zhang, Junjie
    Zhang, Jian
    Wu, Qiang
    Xu, Chang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1602 - 1609
  • [10] AffinityNet: Semi-Supervised Few-Shot Learning for Disease Type Prediction
    Ma, Tianle
    Zhang, Aidong
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1069 - 1076