Generating Hourly Fine Seamless Aerosol Optical Depth Products by Fusing Multiple Satellite and Numerical Model Data

被引:4
作者
Zou, Bin [1 ]
Liu, Ning [1 ,2 ]
Li, Yi [2 ]
Zang, Zengliang [2 ]
Li, Sha [1 ]
Li, Shenxin [1 ]
Wu, Jian [3 ]
机构
[1] Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
[2] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha 410003, Peoples R China
[3] Changsha Environm Monitoring Ctr Hunan Prov, Changsha 410001, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Aerosols; Satellites; Numerical models; Spatial resolution; Spatiotemporal phenomena; Data models; Reflectivity; Fusion method; high resolution; hourly; multiple satellite and numerical products; seamless; MODIS; 3; KM; ALGORITHM; VALIDATION; IMPLEMENTATION; RETRIEVALS; THICKNESS; GOCI;
D O I
10.1109/TGRS.2024.3385397
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to cloud/snow contamination and retrieval method limitation at night, satellite aerosol optical depth (AOD) products often have many missing gaps not only at night but also during the day. In contrast, hourly seamless AOD data with coarse resolution from numerical models can usually be used to fill in the missing gaps in satellite products. However, current studies on seamless optimization of satellite AOD data only focus on fusion results during satellite overpass time and ignore the spatiotemporal complementarity of multiple satellite products. In this study, we propose a model for fusing multiple AOD datasets, which for the first time combines three satellite AOD products and two aerosol numerical model products to produce hourly seamless 1-km AOD products throughout day and night in the Beijing-Tianjin-Hebei urban agglomeration region. Compared with ground AERONET AOD data, the validated results not only achieve a promising accuracy, e.g., R-2= 0.91 (root-mean-square error (RMSE) = 0.09), in the region containing three satellite AOD retrievals, but also obtain a reasonable result, e.g., R-2= 0.83$ ( RMSE = 0.21 ), in the region without satellite AOD retrievals. The spatial information entropy evaluation results also indicate that the generated AOD data can capture more spatial details than the numerical model data. Our results demonstrate that the proposed model can generate reliable hourly seamless fine AOD data, having significant meanings in aerosol-related fields.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 66 条
[1]  
Angstrom A., 1929, GEOGR ANN, V11, P156, DOI [DOI 10.2307/519399, 10.2307/519399]
[2]  
BOLTON D, 1980, MON WEATHER REV, V108, P1046, DOI 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO
[3]  
2
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter [J].
Burnett, Richard ;
Chen, Hong ;
Szyszkowicz, Mieczyslaw ;
Fann, Neal ;
Hubbell, Bryan ;
Pope, C. Arden ;
Apte, Joshua S. ;
Brauer, Michael ;
Cohen, Aaron ;
Weichenthal, Scott ;
Coggins, Jay ;
Di, Qian ;
Brunekreef, Bert ;
Frostad, Joseph ;
Lim, Stephen S. ;
Kan, Haidong ;
Walker, Katherine D. ;
Thurston, George D. ;
Hayes, Richard B. ;
Lim, Chris C. ;
Turner, Michelle C. ;
Jerrett, Michael ;
Krewski, Daniel ;
Gapstur, Susan M. ;
Diver, W. Ryan ;
Ostro, Bart ;
Goldberg, Debbie ;
Crouse, Daniel L. ;
Martin, Randall V. ;
Peters, Paul ;
Pinault, Lauren ;
Tjepkema, Michael ;
van Donkelaar, Aaron ;
Villeneuve, Paul J. ;
Miller, Anthony B. ;
Yin, Peng ;
Zhou, Maigeng ;
Wang, Lijun ;
Janssen, Nicole A. H. ;
Marra, Marten ;
Atkinson, Richard W. ;
Tsang, Hilda ;
Thuan Quoc Thach ;
Cannon, John B. ;
Allen, Ryan T. ;
Hart, Jaime E. ;
Laden, Francine ;
Cesaroni, Giulia ;
Forastiere, Francesco ;
Weinmayr, Gudrun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (38) :9592-9597
[6]   A geostatistical data fusion technique for merging remote sensing and ground-based observations of aerosol optical thickness [J].
Chatterjee, Abhishek ;
Michalak, Anna M. ;
Kahn, Ralph A. ;
Paradise, Susan R. ;
Braverman, Amy J. ;
Miller, Charles E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]  
Chin M, 2002, J ATMOS SCI, V59, P461, DOI 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO
[9]  
2
[10]  
Choi M., 2016, Atmos. Meas. Techn. Discuss., V8, P9565