Interpolation Theorem for Discrete Net Spaces

被引:0
作者
Kalidolday, Aitolkyn H. [1 ]
Nursultanov, Erlan D. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Moscow MV Lomonosov State Univ, Dept Mech & Math, Kazakhstan Branch, Astana, Kazakhstan
来源
EXTENDED ABSTRACTS MWCAPDE 2023 | 2024年 / 1卷
关键词
HARDY-LITTLEWOOD; EMBEDDING-THEOREMS; FOURIER-SERIES; INEQUALITIES; MULTIPLIERS;
D O I
10.1007/978-3-031-41665-1_8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the interpolation properties of the net spaces n(p,q)(M), when M is the set of all segments from Z. It is shown that in this case, the scale of spaces is closed with respect to the real interpolation method. As a corollary, an interpolation theorem of Marcinkevich type is presented.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 16 条
[1]  
Akylzhanov R, 2017, EURASIAN MATH J, V8, P10
[2]   Lp-Lq multipliers on locally compact groups [J].
Akylzhanov, Rauan ;
Ruzhansky, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
[3]   Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and LP- Lq Fourier multipliers on compact homogeneous manifolds [J].
Akylzhanov, Rauan ;
Ruzhansky, Michael ;
Nursultanov, Erlan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) :1519-1548
[4]  
Bekmaganbetov K, 2009, ANAL MATH, V35, P169, DOI 10.1007/s10476-009-0301-3
[5]   Embedding theorems for anisotropic Besov spaces Bprαq([0, 2π)n) [J].
Bekmaganbetov, K. A. ;
Nursultanov, E. D. .
IZVESTIYA MATHEMATICS, 2009, 73 (04) :655-668
[6]  
Bekmaganbetov KA, 2008, MATH NOTES+, V84, P733, DOI 10.1134/S0001434608110163
[7]  
Bekmaganbetov K.A., 2008, Proc. Inst. Math. Natl. Acad. Sci. Ukraine, V5, P34
[8]  
Bergh J., 1976, Interpolation spaces. An introduction
[9]  
Blasco O., 1999, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), V28, P31
[10]   Theory of control of 'catastrophes' [J].
Kostyuchenko, AG ;
Nursultanov, ED .
RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (03) :628-629