VvLBD39, a grape LBD transcription factor, regulates plant response to salt and drought stress

被引:2
|
作者
Chen, Liandi [1 ]
Ji, Xinglong [1 ]
Luo, Chunxiang [1 ]
Song, Xiao [1 ]
Leng, Xiangpeng [1 ]
Ma, Yujiao [3 ]
Wang, Jinling [4 ]
Fang, Jinggui [1 ,2 ]
Ren, Yiran [1 ]
机构
[1] Qingdao Agr Univ, Inst Grape Sci & Engn, Coll Hort, Qingdao 266109, Peoples R China
[2] Nanjing Agr Univ, Coll Hort, Nanjing 210095, Peoples R China
[3] Shandong Acad Agr Sci, Shandong Acad Grape, Jinan, Peoples R China
[4] Peoples Govt Boping, Integrated Serv Ctr Agr Forestry & Water, Liaocheng 252100, Peoples R China
基金
中国国家自然科学基金;
关键词
LBD transcription factor; VvLBD39; Salt and drought stress; ROS scavenging; Abscisic acid; Grape; LOB DOMAIN PROTEINS; CALLUS FORMATION; OSMOTIC-STRESS; GENE FAMILY; ARABIDOPSIS; EXPRESSION; IDENTIFICATION; TOLERANCE; INTERACTS; DEFICIT;
D O I
10.1016/j.envexpbot.2024.105918
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Grape (Vitis vinifera L.), as an important deciduous perennial fruit tree, constantly confronts various abiotic stresses such as salinity and drought. The lateral organ boundaries domain (LBD) proteins are a class of plantspecific transcription factors that play pivotal roles in regulating plant growth and responding to abiotic stress. However, the biological function of the LBD transcription factor in grape remains poorly understood. Here, we cloned and characterized the VvLBD39 gene from grape, which contained a highly conserved LBD domain and localized to the cell nucleus. qRT-PCR analyses showed that the expression of VvLBD39 was downregulated upon exposure to NaCl, polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments, respectively. Overexpression of VvLBD39 in grape calli and Arabidopsis resulted in hypersensitivity to PEG6000 and NaCl stress. Moreover, VvLBD39-overexpressing transgenic tobacco exhibited decreased tolerance to drought and salt stress, as well as insensitivity to exogenous ABA. After drought and salt stress treatments, the chlorophyll content, root length and antioxidant enzyme activity of the transgenic tobacco were lower than those of the wildtype (WT). Conversely, malonic dialdehyde (MDA) content, electronic conductivity, hydrogen peroxide (H2O2) content and superoxide anion (O2- ) productivity were markedly elevated in the transgenic tobacco compared to the WT. Further investigations found that VvLBD39 had a negative impact on stomatal closure, ABA biosynthesis and ABA signaling under drought and salt treatments. In addition, the expression of genes related to reactive oxygen species (ROS) scavenging and stress response were significantly downregulated in VvLBD39 transgenic tobacco. Taken together, these results indicated that VvLBD39 functions as a negative regulator of salt and drought tolerance, making it a promising target for drought and salt resistance breeding.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress
    Mao, Ke
    Dong, Qinglong
    Li, Chao
    Liu, Changhai
    Ma, Fengwang
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [32] Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response
    Wang, Ying
    Cao, Shangjie
    Guan, Chunjing
    Kong, Xin
    Wang, Yiping
    Cui, Ying
    Liu, Bin
    Zhou, Yunwei
    Zhang, Yanni
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 149 : 96 - 110
  • [33] RrWRKY1, a Transcription Factor, Is Involved in the Regulation of the Salt Stress Response in Rosa rugosa
    Zang, Fengqi
    Wu, Qichao
    Li, Zhe
    Li, Ling
    Xie, Xiaoman
    Tong, Boqiang
    Yu, Shuhan
    Liang, Zhaoan
    Chu, Chunxue
    Zang, Dekui
    Ma, Yan
    PLANTS-BASEL, 2024, 13 (21):
  • [34] A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana
    Wang, Feibing
    Zhu, Hong
    Chen, Dahu
    Li, Zhenjun
    Peng, Rihe
    Yao, Quanhong
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 125 (02) : 387 - 398
  • [35] The Populus MYB transcription factor PSAR1 negatively regulates salt stress and is a repressor of ABA signaling
    Fang, Qing
    Zhang, Caiyun
    Liu, Jingjie
    Zeng, Zhi
    Lu, Yanke
    JOURNAL OF PLANT INTERACTIONS, 2025, 20 (01)
  • [36] Zinc finger transcription factor induces the drought, salt and cold stress tolerance in transgenic cotton
    Iqbal, Fozia
    Sadique, Sajjad
    Batool, Fatima
    Sarwar, Muhammad Bilal
    Rashid, Bushra
    Shahid, Muhammad Naveed
    Shahid, Ahmad Ali
    Husnain, Tayyab
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2017, 16 (03): : 333 - 340
  • [37] Comprehensive genomic characterisation of the NAC transcription factor family and its response to drought stress in Eucommia ulmoides
    Wang, Qi
    Hu, Fengcheng
    Yao, Zhaoqun
    Zhao, Xinfeng
    Chu, Guangming
    Ye, Jing
    PEERJ, 2023, 11
  • [38] The sea-island cotton GbTCP4 transcription factor positively regulates drought and salt stress responses
    Wang, Yi
    Yu, Yuehua
    Wan, Huina
    Tang, Jie
    Ni, Zhiyong
    PLANT SCIENCE, 2022, 322
  • [39] A Novel Heat Shock Transcription Factor (ZmHsf08) Negatively Regulates Salt and Drought Stress Responses in Maize
    Wang, Jing
    Chen, Li
    Long, Yun
    Si, Weina
    Cheng, Beijiu
    Jiang, Haiyang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [40] Expression Analysis of the NAC Transcription Factor Family of Populus in Response to Salt Stress
    Wang, Shengji
    Huang, Juanjuan
    Wang, Xingdou
    Dang, Hui
    Jiang, Tingbo
    Han, Youzhi
    FORESTS, 2019, 10 (08):