Deep Factor Learning for Accurate Brain Neuroimaging Data Analysis on Discrimination for Structural MRI and Functional MRI

被引:0
|
作者
Ke, Hengjin [1 ]
Chen, Dan [1 ]
Yao, Quanming [2 ]
Tang, Yunbo [1 ]
Wu, Jia [3 ]
Monaghan, Jessica [4 ]
Sowman, Paul [5 ]
Mcalpine, David [6 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Hubei, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Macquarie Univ, Sch Comp, Macquarie Pk, NSW 2109, Australia
[4] Natl Acoust Labs, Macquarie Pk, NSW 2109, Australia
[5] Macquarie Univ, Sch Psychol Sci, Macquarie Pk, NSW 2109, Australia
[6] Macquarie Univ, Dept Linguist, Macquarie Pk, NSW 2109, Australia
基金
中国国家自然科学基金;
关键词
Tensors; Neuroimaging; Feature extraction; Magnetic resonance imaging; Stability analysis; Diseases; Data models; Automatic feature construction; deep factor learning; MRI; neuroimaging data analysis; tensor; TUCKER DECOMPOSITIONS; TENSOR FACTORIZATION; MULTIWAY ANALYSIS; ALGORITHMS; HISTOLOGY; NETWORKS; RANK;
D O I
10.1109/TCBB.2023.3252577
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of neuroimaging data (e.g., Magnetic Resonance Imaging, structural and functional MRI) plays an important role in monitoring brain dynamics and probing brain structures. Neuroimaging data are multi-featured and non-linear by nature, and it is a natural way to organise these data as tensors prior to performing automated analyses such as discrimination of neurological disorders like Parkinson's Disease (PD) and Attention Deficit and Hyperactivity Disorder (ADHD). However, the existing approaches are often subject to performance bottlenecks (e.g., conventional feature extraction and deep learning based feature construction), as these can lose the structural information that correlates multiple data dimensions or/and demands excessive empirical and application-specific settings. This study proposes a Deep Factor Learning model on a Hilbert Basis tensor (namely, HB-DFL) to automatically derive latent low-dimensional and concise factors of tensors. This is achieved through the application of multiple Convolutional Neural Networks (CNNs) in a non-linear manner along all possible dimensions with no assumed a priori knowledge. HB-DFL leverages the Hilbert basis tensor to enhance the stability of the solution by regularizing the core tensor to allow any component in a certain domain to interact with any component in the other dimensions. The final multi-domain features are handled through another multi-branch CNN to achieve reliable classification, exemplified here using MRI discrimination as a typical case. A case study of MRI discrimination has been performed on public MRI datasets for discrimination of PD and ADHD. Results indicate that 1) HB-DFL outperforms the counterparts in terms of FIT, mSIR and stability (mSC and umSC) of factor learning; 2) HB-DFL identifies PD and ADHD with an accuracy significantly higher than state-of-the-art methods do. Overall, HB-DFL has significant potentials for neuroimaging data analysis applications with its stability of automatic construction of structural features.
引用
收藏
页码:582 / 595
页数:14
相关论文
共 50 条
  • [21] Design and development of a deep learning model for brain abnormality detection using MRI
    Potadar, Mahesh P.
    Holambe, Raghunath S.
    Chile, Rajan H.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 12 (01):
  • [22] Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN Augmentation
    Gab Allah, Ahmed M.
    Sarhan, Amany M.
    Elshennawy, Nada M.
    DIAGNOSTICS, 2021, 11 (12)
  • [23] Super-resolution of brain tumor MRI images based on deep learning
    Zhou, Zhiyi
    Ma, Anbang
    Feng, Qiuting
    Wang, Ran
    Cheng, Lilin
    Chen, Xin
    Yang, Xi
    Liao, Keman
    Miao, Yifeng
    Qiu, Yongming
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (11):
  • [24] Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks
    Guye, Maxime
    Bettus, Gaelle
    Bartolomei, Fabrice
    Cozzone, Patrick J.
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2010, 23 (5-6) : 409 - 421
  • [25] Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks
    Maxime Guye
    Gaelle Bettus
    Fabrice Bartolomei
    Patrick J. Cozzone
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2010, 23 : 409 - 421
  • [26] Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm
    Oh, Jihoon
    Oh, Baek-Lok
    Lee, Kyong-Uk
    Chae, Jeong-Ho
    Yun, Kyongsik
    FRONTIERS IN PSYCHIATRY, 2020, 11
  • [27] A Deep Learning Architecture for Brain Tumor Segmentation in MRI Images
    Shreyas, V.
    Pankajakshan, Vinod
    2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [28] Multi-modal deep learning of functional and structural neuroimaging and genomic data to predict mental illness
    Rahaman, Md Abdur
    Chen, Jiayu
    Fu, Zening
    Lewis, Noah
    Iraji, Armin
    Calhoun, Vince D.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3267 - 3272
  • [29] Blind MRI Brain Lesion Inpainting Using Deep Learning
    Manjon, Jose V.
    Romero, Jose E.
    Vivo-Hernando, Roberto
    Rubio, Gregorio
    Aparici, Fernando
    de la Iglesia-Vaya, Maria
    Tourdias, Thomas
    Coupe, Pierrick
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020, 2020, 12417 : 41 - 49
  • [30] A deep learning approach with subregion partition in MRI image analysis for metastatic brain tumor
    Shi, Jiaxin
    Zhao, Zilong
    Jiang, Tao
    Ai, Hua
    Liu, Jiani
    Chen, Xinpu
    Luo, Yahong
    Fan, Huijie
    Jiang, Xiran
    FRONTIERS IN NEUROINFORMATICS, 2022, 16