Deep Factor Learning for Accurate Brain Neuroimaging Data Analysis on Discrimination for Structural MRI and Functional MRI

被引:0
|
作者
Ke, Hengjin [1 ]
Chen, Dan [1 ]
Yao, Quanming [2 ]
Tang, Yunbo [1 ]
Wu, Jia [3 ]
Monaghan, Jessica [4 ]
Sowman, Paul [5 ]
Mcalpine, David [6 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Hubei, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Macquarie Univ, Sch Comp, Macquarie Pk, NSW 2109, Australia
[4] Natl Acoust Labs, Macquarie Pk, NSW 2109, Australia
[5] Macquarie Univ, Sch Psychol Sci, Macquarie Pk, NSW 2109, Australia
[6] Macquarie Univ, Dept Linguist, Macquarie Pk, NSW 2109, Australia
基金
中国国家自然科学基金;
关键词
Tensors; Neuroimaging; Feature extraction; Magnetic resonance imaging; Stability analysis; Diseases; Data models; Automatic feature construction; deep factor learning; MRI; neuroimaging data analysis; tensor; TUCKER DECOMPOSITIONS; TENSOR FACTORIZATION; MULTIWAY ANALYSIS; ALGORITHMS; HISTOLOGY; NETWORKS; RANK;
D O I
10.1109/TCBB.2023.3252577
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of neuroimaging data (e.g., Magnetic Resonance Imaging, structural and functional MRI) plays an important role in monitoring brain dynamics and probing brain structures. Neuroimaging data are multi-featured and non-linear by nature, and it is a natural way to organise these data as tensors prior to performing automated analyses such as discrimination of neurological disorders like Parkinson's Disease (PD) and Attention Deficit and Hyperactivity Disorder (ADHD). However, the existing approaches are often subject to performance bottlenecks (e.g., conventional feature extraction and deep learning based feature construction), as these can lose the structural information that correlates multiple data dimensions or/and demands excessive empirical and application-specific settings. This study proposes a Deep Factor Learning model on a Hilbert Basis tensor (namely, HB-DFL) to automatically derive latent low-dimensional and concise factors of tensors. This is achieved through the application of multiple Convolutional Neural Networks (CNNs) in a non-linear manner along all possible dimensions with no assumed a priori knowledge. HB-DFL leverages the Hilbert basis tensor to enhance the stability of the solution by regularizing the core tensor to allow any component in a certain domain to interact with any component in the other dimensions. The final multi-domain features are handled through another multi-branch CNN to achieve reliable classification, exemplified here using MRI discrimination as a typical case. A case study of MRI discrimination has been performed on public MRI datasets for discrimination of PD and ADHD. Results indicate that 1) HB-DFL outperforms the counterparts in terms of FIT, mSIR and stability (mSC and umSC) of factor learning; 2) HB-DFL identifies PD and ADHD with an accuracy significantly higher than state-of-the-art methods do. Overall, HB-DFL has significant potentials for neuroimaging data analysis applications with its stability of automatic construction of structural features.
引用
收藏
页码:582 / 595
页数:14
相关论文
共 50 条
  • [1] Accurate segmentation of neonatal brain MRI with deep learning
    Richter, Leonie
    Fetit, Ahmed E.
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [2] Role of deep learning in infant brain MRI analysis
    Mostapha, Mahmoud
    Styner, Martin
    MAGNETIC RESONANCE IMAGING, 2019, 64 : 171 - 189
  • [3] Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri)
    Pallast, Niklas
    Diedenhofen, Michael
    Blaschke, Stefan
    Wieters, Frederique
    Wiedermann, Dirk
    Hoehn, Mathias
    Fink, Gereon R.
    Aswendt, Markus
    FRONTIERS IN NEUROINFORMATICS, 2019, 13
  • [4] Weakly Supervised Deep Learning for Brain Disease Prognosis Using MRI and Incomplete Clinical Scores
    Liu, Mingxia
    Zhang, Jun
    Lian, Chunfeng
    Shen, Dinggang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3381 - 3392
  • [5] Deep learning for brain metastasis detection and segmentation in longitudinal MRI data
    Huang, Yixing
    Bert, Christoph
    Sommer, Philipp
    Frey, Benjamin
    Gaipl, Udo
    Distel, Luitpold, V
    Weissmann, Thomas
    Uder, Michael
    Schmidt, Manuel A.
    Dorfler, Arnd
    Maier, Andreas
    Fietkau, Rainer
    Putz, Florian
    MEDICAL PHYSICS, 2022, 49 (09) : 5773 - 5786
  • [6] Brain MRI analysis using a deep learning based evolutionary approach
    Shahamat, Hossein
    Abadeh, Mohammad Saniee
    NEURAL NETWORKS, 2020, 126 (218-234) : 218 - 234
  • [7] Anatomically-Informed Data Augmentation for Functional MRI with Applications to Deep Learning
    Nguyen, Kevin P.
    Fatt, Cherise Chin
    Treacher, Alex
    Mellema, Cooper
    Trivedi, Madhukar H.
    Montillo, Albert
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [8] Accurate MRI-Based Brain Tumor Diagnosis: Integrating Segmentation and Deep Learning Approaches
    Ashimgaliyev, Medet
    Matkarimov, Bakhyt
    Barlybayev, Alibek
    Li, Rita Yi Man
    Zhumadillayeva, Ainur
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [9] Developments in Brain Tumor Segmentation Using MRI: Deep Learning Insights and Future Perspectives
    Karim, Shahid
    Tong, Geng
    Yu, Yiting
    Laghari, Asif Ali
    Khan, Abdullah Ayub
    Ibrar, Muhammad
    Mehmood, Faisal
    IEEE ACCESS, 2024, 12 : 26875 - 26896
  • [10] Age Detection from Brain MRI Images Using the Deep Learning
    Siar, Masoumeh
    Teshnehlab, Mohammad
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 369 - 374