Multi-delay coherence imaging spectroscopy optimized for ion temperature measurements in the divertor plasma of the Wendelstein 7-X stellarator

被引:2
作者
Kriete, David M. [1 ]
Perseo, Valeria [2 ]
Gradic, Dorothea [2 ]
Ennis, David A. [1 ]
Koenig, Ralf [2 ]
Maurer, David A. [1 ]
机构
[1] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
[2] Max Planck Inst Plasma Phys, D-17491 Greifswald, Mecklenburg Vor, Germany
关键词
CALIBRATION; PHYSICS; DESIGN; FIELD; EDGE;
D O I
10.1063/5.0208586
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A new coherence imaging spectroscopy (CIS) diagnostic optimized to measure the C2+ impurity ion temperature T-i spatial distribution in the divertor plasma of the W7-X stellarator is designed, tested, and validated. Using CIS to obtain T-i in the edge of magnetically confined plasmas has historically been challenging because Doppler broadening and Zeeman splitting have comparable effects on the shape of spectral emission lines. To distinguish between these two mechanisms, a novel approach to birefringent crystal design is employed to minimize the diagnostic's sensitivity to Zeeman splitting. The recently developed pixelated multi-delay CIS approach is also used to obtain four times as much spectral information as traditional CIS approaches. The T-i-optimized CIS diagnostic is validated in a long-pulse W7-X plasma by comparison with a high-resolution spectrometer whose sightlines overlap with the CIS field of view. The CIS and spectrometer T-i profiles have the same shape and agree to within 10% on average and 25% in the worst case. Images of the T-i distribution near the divertor show toroidally elongated bands aligned with the magnetic field, with T-i ranging between 10 and 40 eV. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:15
相关论文
共 47 条
[11]   A new calibration implementation for Doppler Coherence Imaging Spectroscopy [J].
Gradic, Dorothea ;
Perseo, Valeria ;
Koenig, Ralf ;
Ennis, David .
FUSION ENGINEERING AND DESIGN, 2019, 146 :995-998
[12]  
Griem H.R., 1974, Spectral Line Broadening By Plasmas
[13]  
H. P, 2004, THE ADAS USER MANUAL
[14]   Retarding field analyzer for the wendelstein 7-X boundary plasma [J].
Henkel, M. ;
Li, Y. ;
Liang, Y. ;
Drews, P. ;
Knieps, A. ;
Killer, C. ;
Nicolai, D. ;
Hoeschen, D. ;
Geiger, J. ;
Xiao, C. ;
Sandri, N. ;
Satheeswaran, G. ;
Liu, S. ;
Grulke, O. ;
Jakubowski, M. ;
Brezinsek, S. ;
Otte, M. ;
Neubauer, O. ;
Schweer, B. ;
Xu, G. ;
Cai, J. .
FUSION ENGINEERING AND DESIGN, 2020, 157
[15]   Atomic collision processes with ions at the edge of magnetically confined fusion plasmas [J].
Hey, JD ;
Chu, CC ;
Mertens, P ;
Brezinsek, S ;
Unterberg, B .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (12) :2543-2567
[16]   Oxygen ion impurity in the TEXTOR tokamak boundary plasma observed and analysed by Zeeman spectroscopy [J].
Hey, JD ;
Chu, CC ;
Brezinsek, S ;
Mertens, P ;
Unterberg, B .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (06) :1525-1553
[17]  
Hey JD, 2002, CONTRIB PLASM PHYS, V42, P635, DOI 10.1002/1521-3986(200211)42:6/7<635::AID-CTPP635>3.0.CO
[18]  
2-M
[19]   Imaging charge exchange recombination spectroscopy on the TEXTOR tokamak [J].
Howard, J. ;
Jaspers, R. ;
Lischtschenko, O. ;
Delabie, E. ;
Chung, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)