General decay results for a viscoelastic wave equation with the logarithmic nonlinear source and dynamic Wentzell boundary condition *

被引:0
作者
Guo, Dandan [1 ]
Zhang, Zhifei [2 ,3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscoelastic wave equation; Logarithmic nonlinear source; Dynamic Wentzell boundary condition; Lyapunov method; General decay estimate; EXISTENCE; RATES;
D O I
10.1016/j.nonrwa.2024.104149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we investigate a viscoelastic wave equation involving a logarithmic nonlinear source and dynamic Wentzell boundary condition. Making some assumptions on the memory kernel function and using convex function theory and Lyapunov method, we establish the general decay estimate of the solutions. Finally we give two examples to illustrate our results.
引用
收藏
页数:13
相关论文
共 50 条
[21]   General decay and blow up of solutions for a system of viscoelastic wave equations with nonlinear boundary source terms [J].
Peyravi, Amir .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (02) :1056-1076
[22]   Decay rate for viscoelastic wave equation of variable coefficients with delay and dynamic boundary conditions [J].
Hao, Jianghao ;
Du, Fangqing .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) :284-302
[23]   General decay results for a viscoelastic wave equation with a variable exponent nonlinearity [J].
Hassan, Jamilu Hashim ;
Messaoudi, Salim A. .
ASYMPTOTIC ANALYSIS, 2021, 125 (3-4) :365-388
[24]   General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions [J].
Wu, Shun-Tang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (01) :65-106
[25]   General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping [J].
Li, Qian ;
He, Luofei .
BOUNDARY VALUE PROBLEMS, 2018,
[26]   Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities [J].
Al-Gharabli, Mohammad M. ;
Al-Mahdi, Adel M. ;
Kafini, Mohammad .
AIMS MATHEMATICS, 2021, 6 (09) :10105-10129
[27]   GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND NONLINEAR BOUNDARY DAMPING-SOURCE INTERACTIONS [J].
Wu, Shun-Tang .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (05) :981-994
[28]   Decay and blow-up for a viscoelastic wave equation of variable coefficients with logarithmic nonlinearity [J].
Hao, Jianghao ;
Du, Fangqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
[29]   General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback [J].
Al-Gharabli, Mohammad M. ;
Al-Mahdi, Adel M. ;
Messaoudi, Salim A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) :551-572
[30]   General Decay for the Degenerate Equation with a Memory Condition at the Boundary [J].
Shin, Su-Young ;
Kang, Jum-Ran .
ABSTRACT AND APPLIED ANALYSIS, 2013,