General decay results for a viscoelastic wave equation with the logarithmic nonlinear source and dynamic Wentzell boundary condition *

被引:0
作者
Guo, Dandan [1 ]
Zhang, Zhifei [2 ,3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscoelastic wave equation; Logarithmic nonlinear source; Dynamic Wentzell boundary condition; Lyapunov method; General decay estimate; EXISTENCE; RATES;
D O I
10.1016/j.nonrwa.2024.104149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we investigate a viscoelastic wave equation involving a logarithmic nonlinear source and dynamic Wentzell boundary condition. Making some assumptions on the memory kernel function and using convex function theory and Lyapunov method, we establish the general decay estimate of the solutions. Finally we give two examples to illustrate our results.
引用
收藏
页数:13
相关论文
共 50 条
[11]   General decay of solutions to a viscoelastic wave equation with linear damping, nonlinear damping and source term [J].
Li Qian ;
He Luofei .
APPLICABLE ANALYSIS, 2020, 99 (07) :1248-1259
[12]   On general decay for a nonlinear viscoelastic equation [J].
Kelleche, Abdelkarim ;
Feng, Baowei .
APPLICABLE ANALYSIS, 2023, 102 (06) :1582-1600
[13]   General decay for the viscoelastic wave equation for Kirchhoff-type containing Balakrishnan-Taylor damping, nonlinear damping and logarithmic source term under acoustic boundary conditions [J].
Lee, Mi Jin ;
Kang, Jum-Ran .
BOUNDARY VALUE PROBLEMS, 2025, 2025 (01)
[14]   General decay of solutions of a wave equation with memory term and acoustic boundary condition [J].
Vicente, A. ;
Frota, C. L. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) :2140-2152
[15]   Control of a nonlinear wave equation with a dynamic boundary condition [J].
Madureira, Rodrigo L. R. ;
Rincon, Mauro A. ;
Apolaya, Ricardo F. ;
Carmo, Bruno A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 :140-149
[16]   Uniform Decay of Solutions for a Nonlinear Viscoelastic Wave Equation with Boundary Dissipation [J].
Wu, Shun-Tang ;
Chen, Hsueh-Fang .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[17]   GENERAL AND OPTIMAL DECAY FOR A VISCOELASTIC EQUATION WITH BOUNDARY FEEDBACK [J].
Messaoudi, Salim A. ;
Al-Khulaifi, Waled .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (02) :413-427
[18]   On a viscoelastic equation with nonlinear boundary damping and source terms: Global existence and decay of the solution [J].
Lu, Liqing ;
Li, Shengjia ;
Chai, Shugen .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) :295-303
[19]   Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation [J].
Li, Fushan ;
Zhao, Zengqin ;
Chen, Yanfu .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) :1759-1773
[20]   ENERGY DECAY RATES FOR VISCOELASTIC WAVE EQUATION WITH DYNAMIC BOUNDARY CONDITIONS [J].
Jeong, Jin-Mun ;
Park, Jong Yeoul ;
Kang, Yong Han .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (03) :500-517