Fiber loop quantum buffer for photonic qubits

被引:1
作者
Lee, Kim Fook [1 ]
Gul, Gamze [2 ]
Jim, Zhao [3 ]
Kumar, Prem [1 ]
机构
[1] Northwestern Univ, Ctr Photon Commun & Comp, Dept Elect & Comp Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Northwestern Univ, Grad Program Appl Phys, 2145 Sheridan Rd, Evanston, IL 60208 USA
[3] Photonwares, 15 Presidential Way, Woburn, MA 01801 USA
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 08期
关键词
quantum buffer; router; fiber loop buffer; quantum networking; quantum storage; GENERATION; MEMORY; PAIRS;
D O I
10.1088/1367-2630/ad6703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a fiber loop quantum buffer based on a low-loss 2 x 2 switch and a unit delay made of a fiber delay line. We characterize the device by using a two-photon polarization entangled state in which one photon of the entangled photon pair is stored and retrieved at a repetition rate up to 78 kHz. The device, which enables integer multiples of a unit delay, can store the qubit state in a unit of fiber delay line up to 5.4 km and the number of loop round-trips up to 3. Furthermore, we configure the device with other active elements to realize integer multiplier and divider of a unit delay of a qubit. The quantum state tomography is performed on the retrieved photon and its entangled photon. We obtain a state fidelity > 94 % with a maximum storage time of 52 s with an insertion loss of 5.56 dB. To further characterize the storing and retrieving processes of the device, we perform entanglement-assisted quantum process tomography on the buffered qubit state. The process fidelity of the device is > 0.98. Our result implies that the device preserves the superposition and entanglement of a qubit state from a two-photon polarization-entangled state. This is a significant step towards facilitating applications in optical asynchronous transfer mode based quantum networks.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Ancilla-assisted quantum process tomography [J].
Altepeter, JB ;
Branning, D ;
Jeffrey, E ;
Wei, TC ;
Kwiat, PG ;
Thew, RT ;
O'Brien, JL ;
Nielsen, MA ;
White, AG .
PHYSICAL REVIEW LETTERS, 2003, 90 (19) :4
[2]  
Arnold N T., 2021, Photon. Quantum, V11844, P17, DOI [10.1117/12.2600820, DOI 10.1117/12.2600820]
[3]   Quantum circuits with many photons on a programmable nanophotonic chip [J].
Arrazola, J. M. ;
Bergholm, V ;
Bradler, K. ;
Bromley, T. R. ;
Collins, M. J. ;
Dhand, I ;
Fumagalli, A. ;
Gerrits, T. ;
Goussev, A. ;
Helt, L. G. ;
Hundal, J. ;
Isacsson, T. ;
Israel, R. B. ;
Izaac, J. ;
Jahangiri, S. ;
Janik, R. ;
Killoran, N. ;
Kumar, S. P. ;
Lavoie, J. ;
Lita, A. E. ;
Mahler, D. H. ;
Menotti, M. ;
Morrison, B. ;
Nam, S. W. ;
Neuhaus, L. ;
Qi, H. Y. ;
Quesada, N. ;
Repingon, A. ;
Sabapathy, K. K. ;
Schuld, M. ;
Su, D. ;
Swinarton, J. ;
Szava, A. ;
Tan, K. ;
Tan, P. ;
Vaidya, V. D. ;
Vernon, Z. ;
Zabaneh, Z. ;
Zhang, Y. .
NATURE, 2021, 591 (7848) :54-+
[4]   Quantum Wrapper Networking [J].
Ben Yoo, S. J. ;
Singh, Sandeep Kumar ;
On, Mehmet Berkay ;
Gul, Gamze ;
Kanter, Gregory S. ;
Proietti, Roberto ;
Kumar, Prem .
IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (03) :76-81
[5]  
Bonsma-Fisher K A G., 2024, Opt. Quantum, V2, P41, DOI [10.1364/OPTICAQ.506601, DOI 10.1364/OPTICAQ.506601]
[6]   Toward a Quantum Memory in a Fiber Cavity Controlled by Intracavity Frequency Translation [J].
Bustard, Philip J. ;
Bonsma-Fisher, Kent ;
Hnatovsky, Cyril ;
Grobnic, Dan ;
Mihailov, Stephen J. ;
England, Duncan ;
Sussman, Benjamin J. .
PHYSICAL REVIEW LETTERS, 2022, 128 (12)
[7]  
Chen Y, 2024, OPTICAL FIBER COMMUN
[8]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[9]   All-optically tunable buffer for single photons [J].
Clemmen, Stephane ;
Farsi, Alessandro ;
Ramelow, Sven ;
Gaeta, Alexander L. .
OPTICS LETTERS, 2018, 43 (09) :2138-2141
[10]   Packet switching in quantum networks: A path to the quantum Internet [J].
DiAdamo, Stephen ;
Qi, Bing ;
Miller, Glen ;
Kompella, Ramana ;
Shabani, Alireza .
PHYSICAL REVIEW RESEARCH, 2022, 4 (04)