Weakly-Supervised Semantic Segmentation for Histopathology Images Based on Dataset Synthesis and Feature Consistency Constraint

被引:0
作者
Fang, Zijie [1 ]
Chen, Yang [1 ]
Wang, Yifeng [2 ]
Wang, Zhi [1 ]
Ji, Xiangyang [3 ]
Zhang, Yongbing [2 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
[2] Harbin Inst Technol Shenzhen, Shenzhen, Peoples R China
[3] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
来源
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1 | 2023年
基金
中国国家自然科学基金;
关键词
NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tissue segmentation is a critical task in computational pathology due to its desirable ability to indicate the prognosis of cancer patients. Currently, numerous studies attempt to use image-level labels to achieve pixel-level segmentation to reduce the need for fine annotations. However, most of these methods are based on class activation map, which suffers from inaccurate segmentation boundaries. To address this problem, we propose a novel weakly-supervised tissue segmentation framework named PistoSeg, which is implemented under a fully-supervised manner by transferring tissue category labels to pixel-level masks. Firstly, a dataset synthesis method is proposed based on Mosaic transformation to generate synthesized images with pixel-level masks. Next, considering the difference between synthesized and real images, this paper devises an attention-based feature consistency, which directs the training process of a proposed pseudo-mask refining module. Finally, the refined pseudo-masks are used to train a precise segmentation model for testing. Experiments based on WSSS4LUAD and BCSS-WSSS validate that PistoSeg outperforms the state-of-the-art methods. The code is released at https://github.com/Vison307/PistoSeg.
引用
收藏
页码:606 / 613
页数:8
相关论文
共 25 条
  • [1] Learning Pixel-level Semantic Affinity with Image-level Supervision forWeakly Supervised Semantic Segmentation
    Ahn, Jiwoon
    Kwak, Suha
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4981 - 4990
  • [2] Structured crowdsourcing enables convolutional segmentation of histology images
    Amgad, Mohamed
    Elfandy, Habiba
    Hussein, Hagar
    Atteya, Lamees A.
    Elsebaie, Mai A. T.
    Elnasr, Lamia S. Abo
    Sakr, Rokia A.
    Salem, Hazem S. E.
    Ismail, Ahmed F.
    Saad, Anas M.
    Ahmed, Joumana
    Elsebaie, Maha A. T.
    Rahman, Mustafijur
    Ruhban, Inas A.
    Elgazar, Nada M.
    Alagha, Yahya
    Osman, Mohamed H.
    Alhusseiny, Ahmed M.
    Khalaf, Mariam M.
    Younes, Abo-Alela F.
    Abdulkarim, Ali
    Younes, Duaa M.
    Gadallah, Ahmed M.
    Elkashash, Ahmad M.
    Fala, Salma Y.
    Zaki, Basma M.
    Beezley, Jonathan
    Chittajallu, Deepak R.
    Manthey, David
    Gutman, David A.
    Cooper, Lee A. D.
    [J]. BIOINFORMATICS, 2019, 35 (18) : 3461 - 3467
  • [3] Tumor Microenvironment
    Arneth, Borros
    [J]. MEDICINA-LITHUANIA, 2020, 56 (01):
  • [4] What's the Point: Semantic Segmentation with Point Supervision
    Bearman, Amy
    Russakovsky, Olga
    Ferrari, Vittorio
    Fei-Fei, Li
    [J]. COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 549 - 565
  • [5] Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
  • [6] HistoSegNet: Semantic Segmentation of Histological Tissue Type in Whole Slide Images
    Chan, Lyndon
    Hosseini, Mahdi S.
    Rowsell, Corwyn
    Plataniotis, Konstantinos N.
    Damaskinos, Savvas
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10661 - 10670
  • [7] Chang YT, 2020, PROC CVPR IEEE, P8988, DOI 10.1109/CVPR42600.2020.00901
  • [8] Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks
    Chattopadhay, Aditya
    Sarkar, Anirban
    Howlader, Prantik
    Balasubramanian, Vineeth N.
    [J]. 2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 839 - 847
  • [9] C-CAM: Causal CAM for Weakly Supervised Semantic Segmentation on Medical Image
    Chen, Zhang
    Tian, Zhiqiang
    Zhu, Jihua
    Li, Ce
    Du, Shaoyi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11666 - 11675
  • [10] Han C., 2022, WSSS4LUAD: Grand challenge on weakly-supervised tissue semantic segmentation for lung adenocarcinoma