Multitap microwave photonic filter based on a DFB laser array using photonic wire bonding

被引:0
作者
Xu, Zhenzhen [1 ,2 ,3 ,4 ,5 ]
Yang, Tongtong [1 ,2 ,3 ,4 ,5 ]
Sun, Zhenxing [1 ,2 ,3 ,4 ,5 ]
Mei, Yipeng [1 ,2 ,3 ,4 ,5 ]
Lu, Jun [1 ,2 ,3 ,4 ,5 ]
Wang, Wenxuan [6 ]
Ma, Yuxin [1 ,2 ,3 ,4 ,5 ]
Chen, Xiangfei [1 ,2 ,3 ,4 ,5 ]
机构
[1] Nanjing Univ, Key Lab Intelligent Opt Sensing & Manipulat, Minist Educ, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Tongding Joint Lab Large scale Photon Integrated C, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Inst Opt Commun Engn, Nanjing 210093, Peoples R China
[6] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
RF;
D O I
10.1364/JOSAB.522616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose and experimentally demonstrate a multitap microwave photonic filter (MPF) based on a distributed feedback (DFB) laser array using photonic wire bonding (PWB). Through the application of the PWB technique, an eight-wavelength DFB laser array with wavelength spacing of 400 GHz was hybrid-integrated with an arrayed waveguide grating multiplexer. Remarkably, the insertion losses of all eight channels are maintained below 5 dB. In the experiments, the larger wavelength spacing allowed us to achieve a sinc MPF with a lower 3 dB bandwidth of 0.22 GHz using only eight taps. Further, Gaussian apodization enabled the out -of -band rejection of the filter to reach 24 dB. These results indicate that the proposed scheme could provide a promising guideline for the MPFs that demand high reconfigurability and greatlyreduced size and complexity. (c) 2024 Optica Publishing Group
引用
收藏
页码:1026 / 1030
页数:5
相关论文
共 25 条
  • [1] Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography
    Blaicher, Matthias
    Billah, Muhammad Rodlin
    Kemal, Juned
    Hoose, Tobias
    Marin-Palomo, Pablo
    Hofmann, Andreas
    Kutuvantavida, Yasar
    Kieninger, Clemens
    Dietrich, Philipp-Immanuel
    Lauermann, Matthias
    Wolf, Stefan
    Troppenz, Ute
    Moehrle, Martin
    Merget, Florian
    Skacel, Sebastian
    Witzens, Jeremy
    Randel, Sebastian
    Freude, Wolfgang
    Koos, Christian
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [2] A tutorial on microwave photonic filters
    Capmany, J
    Ortega, B
    Pastor, D
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) : 201 - 229
  • [3] High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients
    Capmany, J
    Mora, J
    Pastor, D
    Ortega, B
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (12) : 2730 - 2732
  • [4] Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients
    Capmany, J
    Mora, J
    Ortega, B
    Pastor, D
    [J]. OPTICS EXPRESS, 2005, 13 (05): : 1412 - 1417
  • [5] Microwave photonics combines two worlds
    Capmany, Jose
    Novak, Dalma
    [J]. NATURE PHOTONICS, 2007, 1 (06) : 319 - 330
  • [6] Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp
    Dai, YT
    Chen, XF
    Xia, L
    Zhang, YJ
    Xie, SZ
    [J]. OPTICS LETTERS, 2004, 29 (12) : 1333 - 1335
  • [7] Optical single-sideband polarization modulator based on Sagnac interferometers and its applications in radio-over-fiber systems
    Ganjali, Mohsen
    Safavi, Najmeh
    Qashqaei, Mohammadreza
    Hosseini, S. Esmail
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (11) : 3268 - 3276
  • [8] Huang D., 2023, 27 INT SEM LAS C, V3, P1
  • [10] A Selectable Multiband Bandpass Microwave Photonic Filter
    Jiang, Yang
    Shum, Perry Ping
    Zu, Peng
    Zhou, Junqiang
    Bai, Guangfu
    Xu, Jing
    Zhou, Zhuya
    Li, Hengwen
    Wang, Shunyan
    [J]. IEEE PHOTONICS JOURNAL, 2013, 5 (03):