Lithium-ion battery high performance cathode electrode based on LiFePO4 and thermal sensitive microspheres with thermal shutdown properties

被引:1
作者
Monteiro, Ines F. [1 ,2 ,3 ]
Pinto, Rafael S. [1 ,2 ,3 ]
Silva, Maria M. [1 ]
Fidalgo-Marijuan, Arkaitz [4 ,5 ]
Costa, Carlos M. [2 ,3 ]
Lanceros-Mendez, Senentxu [2 ,3 ,5 ,6 ]
Goncalves, Renato [1 ]
机构
[1] Univ Minho, Ctr Chem, P-4710057 Braga, Portugal
[2] Univ Minho, Phys Ctr Minho & Porto Univ CF UM UP, P-4710057 Braga, Portugal
[3] Univ Minho, Lab Phys Mat & Emergent Technol, LapMET, P-4710057 Braga, Portugal
[4] Univ Basque Country UPV EHU, Dept Organ & Inorgan Chem, Leioa 48940, Spain
[5] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[6] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
关键词
Thermal shutdown; Cathode; LiFePO4; Microsphere; Electrode; Safety; EXPANDABLE MICROSPHERES; RUNAWAY; BINDER; LAYER; MECHANISMS; PROTECTION; SEPARATOR; POLYMERS; FIRE;
D O I
10.1016/j.jpowsour.2024.234956
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The critical issue of thermal runaway events in lithium -ion batteries (LIBs) is recognized as a primary cause of battery-related accidents. Despite ongoing efforts to enhance LIB safety, challenges persist due to varying chemical compositions, states of charge, and conditions of use across different batteries. To advance battery safety and considering cost and practicality, this research introduces a novel cathode material with thermal shutdown characteristics. Incorporating thermoplastic microspheres into the cathode matrix does not compromise the cathode 's structural integrity, but leads to ionic conductivity value reduction, and a consequent reduction of battery performance for the larger microsphere concentrations of 5.0 wt% and 7.5 wt%. On the other hand, the samples demonstrate a thermal shutdown behaviour, triggered by the volumetric expansion of the microspheres, effectively ceasing electrical and ionic conduction, thereby preventing thermal runaway. The cathode with low microsphere concentration, 2.5 wt% of microspheres, outperforms (155 mAh center dot g(-1), at C/8-rate) room temperature battery performance with respect to the conventional cathode and also exhibits thermal shutdown behaviour at 90 degrees C. The research highlights the potential of integrating expandable microspheres into cathodes for the development of safer batteries, offering a scalable and cost-effective solution compatible with existing battery technologies.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge
    Wang, Cong-jie
    Zhu, Yan-li
    Gao, Fei
    Bu, Xin-ya
    Chen, Heng-shuai
    Quan, Ting
    Xu, Yi-bo
    Jiao, Qing-jie
    APPLIED ENERGY, 2022, 328
  • [42] Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density
    Hou, Yuyang
    Wang, Xujiong
    Zhu, Yusong
    Hu, Chenglin
    Chang, Zheng
    Wu, Yuping
    Holze, Rudolf
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (46) : 14713 - 14718
  • [43] Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries
    Hamamoto, K.
    Fukushima, M.
    Mamiya, M.
    Yoshizawa, Y.
    Akimoto, J.
    Suzuki, T.
    Fujishiro, Y.
    SOLID STATE IONICS, 2012, 225 : 560 - 563
  • [44] Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries
    Zhang, Hongwei
    Li, Jiayi
    Luo, Linqu
    Zhao, Jie
    He, Junyu
    Zhao, Xiaoxian
    Liu, Hao
    Qin, Yuanbin
    Wang, Fengyun
    Song, Jianjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 876
  • [45] Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries
    Deng, Honggui
    Jin, Shuangling
    Zhan, Liang
    Wang, Yanli
    Qiao, Wenming
    Ling, Licheng
    JOURNAL OF POWER SOURCES, 2012, 220 : 342 - 347
  • [46] Predicting the effect of silicon electrode design parameters on thermal performance of a lithium-ion battery
    Dasari, Harika
    Eisenbraun, Eric
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND ENGINEERING, 2023, 13 (04): : 659 - 672
  • [47] Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4
    Prosini, Pier Paolo
    Cento, Cinzia
    Pozio, Alfonso
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (03) : 795 - 804
  • [48] Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries
    Ding, Yan-Hong
    Huang, Guo-Long
    Li, Huan-Huan
    Xie, Hai-Ming
    Sun, Hai-Zhu
    Zhang, Jing-Ping
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (12) : 9630 - 9635
  • [49] Study of 18650 LiFePO4 Lithium-Ion Battery Cells for Stationary and EV Applications: Performance, Reliability, and Safety
    Maher, Kenza
    2023 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING, REPE 2023, 2023, : 156 - 162
  • [50] Synthesis, characterization and electrochemical performances of LiFePO4/graphene cathode material for high power lithium-ion batteries
    Shang, Weili
    Kong, Lingyong
    Ji, Xuewen
    SOLID STATE SCIENCES, 2014, 38 : 79 - 84