Derivation, Optimization, and Comparative Analysis of Support Vector Machines Application to Multi-Class Image Data

被引:0
作者
Shekhar, Avi [1 ]
Saeed, Amir K. [1 ]
Johnson, Benjamin A. [1 ]
Rodriguez, Benjamin M. [1 ]
机构
[1] Johns Hopkins Univ, Whiting Sch Engn, 3400 N Charles St, Baltimore, MD 21218 USA
来源
MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2024 | 2024年 / 13033卷
关键词
support vector machine; machine learning; optimization; multimodal;
D O I
10.1117/12.3014060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support Vector Machines (SVM) have emerged as a powerful and versatile machine learning technique for solving classification and regression problems. This paper presents a thorough review of SVM, encompassing its motivation, derivation of the optimization problem, the utilization of kernels for data transformation, and a comprehensive analysis of solution methods. The review is supported by experiments conducted on a data set derived from the Traffic Sign data set. The motivation for SVM lies in its ability to address complex classification tasks by transforming the data into a higher-dimensional feature space. This is particularly beneficial for data sets derived from multiple sources. The findings presented in this paper contribute to a better understanding of SVM's capabilities.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Support vector machines maximizing geometric margins for multi-class classification
    Keiji Tatsumi
    Tetsuzo Tanino
    TOP, 2014, 22 : 815 - 840
  • [2] TVERBERG'S THEOREM AND MULTI-CLASS SUPPORT VECTOR MACHINES
    Soberon, Pablo
    FOUNDATIONS OF DATA SCIENCE, 2024, : 568 - 580
  • [3] Kernel Based Data-Adaptive Support Vector Machines for Multi-Class Classification
    Shao, Jianli
    Liu, Xin
    He, Wenqing
    MATHEMATICS, 2021, 9 (09)
  • [4] Support Vector Machines: A Distance-Based Approach to Multi-Class Classification
    Aoudi, Wissam
    Barbar, Aziz M.
    2016 IEEE INTERNATIONAL MULTIDISCIPLINARY CONFERENCE ON ENGINEERING TECHNOLOGY (IMCET), 2016, : 75 - 80
  • [5] Rejoinder on: Support Vector Machines Maximizing Geometric Margins for Multi-Class Classification
    Tatsumi, Keiji
    Tanino, Tetsuzo
    TOP, 2014, 22 (03) : 856 - 859
  • [6] Fusing binary support vector machines (SVM) into multi-class SVM
    Ying Zilu
    Li Jingwen
    Zhang Youwei
    SIGNAL ANALYSIS, MEASUREMENT THEORY, PHOTO-ELECTRONIC TECHNOLOGY, AND ARTIFICIAL INTELLIGENCE, PTS 1 AND 2, 2006, 6357
  • [7] Improved Binary Tree Support Vector Machines for Multi-class Classification
    Pan, Yuqi
    Zheng, Yanwei
    2011 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND APPLICATIONS, 2011, : 111 - 116
  • [8] Multi-Class Wine Grades Predictions with Hierarchical Support Vector Machines
    Chen, Bernard
    Tawiah, Clifford
    Palmer, James
    Erol, Recep
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 111 - 115
  • [9] Improved Nonparallel Hyperplanes Support Vector Machines for Multi-class Classification
    Bai, Fusheng
    Liu, Ruijie
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [10] A Comparative Study of Kernels for the Multi-class Support Vector Machine
    Chaudhuri, Arindam
    De, Kajal
    Chatterjee, Dipak
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2008, : 3 - +