Numerical calculation of N-periodic wave solutions of the negative-order Korteweg-de Vries equations

被引:8
作者
Wang, Yu [1 ]
Zhao, Zhonglong [1 ]
Zhang, Yufeng [2 ]
机构
[1] North Univ China, Sch Math, Taiyuan 030051, Shanxi, Peoples R China
[2] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
BACKLUND-TRANSFORMATIONS; EVOLUTION-EQUATIONS; KDV EQUATION; DYNAMICS; SOLITONS;
D O I
10.1209/0295-5075/ad3a10
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
- In this paper, the N -periodic wave solutions of the negative -order Korteweg-de Vries equations are presented, which can be used to describe wave phenomena in the water waves and plasma waves. Combining the bilinear Ba<spacing diaeresis>cklund transformation with the Riemann-theta function, the N -periodic wave solutions can be obtained. Employing the parity of the bilinear forms for the Ba<spacing diaeresis>cklund transformation, the complexity of the calculation can be reduced. The difficulty of solving N -periodic wave solutions can be transformed into solving least square problems. The Gauss -Newton numerical algorithm is employed to solve this kind of problem. Furthermore, the characteristic lines are used to analyze quantitatively the quasi -periodic solutions. The characteristic line analysis method is specifically demonstrated in the case of N = 3. Some examples of numerical simulations for the 3 -periodic and 4 -periodic waves are presented. It is proved that this method can be further extended to the N -periodic wave solutions. Copyright (c) 2024 EPLA
引用
收藏
页数:8
相关论文
共 70 条
  • [1] Ablowitz M J., 1991, Solitons, nonlinear evolution equations and inverse scattering, Vvolume 149, DOI 10.1017/CBO9780511623998
  • [2] Fractional Integrable Nonlinear Soliton Equations
    Ablowitz, Mark J.
    Been, Joel B.
    Carr, Lincoln D.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (18)
  • [3] Interacting nonlinear wave envelopes and rogue wave formation in deep water
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    [J]. PHYSICS OF FLUIDS, 2015, 27 (01)
  • [5] Introduction to the Special Issue on Emergent Hydrodynamics in Integrable Many-Body Systems
    Bastianello, Alvise
    Bertini, Bruno
    Doyon, Benjamin
    Vasseur, Romain
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (01):
  • [6] Bjorck Ake, 1996, Numerical Methods for Least Squares Problems
  • [7] Rogue waves arising on the standing periodic waves in the Ablowitz-Ladik equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2024, 152 (01) : 147 - 173
  • [8] QUASIPERIODIC SOLUTIONS OF THE NEGATIVE-ORDER KORTEWEG-DE VRIES HIERARCHY
    Chen, Jinbing
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 199 (03) : 798 - 822
  • [9] Hydrodynamic Diffusion in Integrable Systems
    De Nardis, Jacopo
    Bernard, Denis
    Doyon, Benjamin
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (16)
  • [10] Dubrovin B, 1975, FUNCTIONAL ANAL APPL, V9, P215, DOI [DOI 10.1007/BF01075598, 10.1007/BF01075598]