Lipid nanoparticles for local delivery of mRNA to the respiratory tract: Effect of PEG-lipid content and administration route

被引:11
作者
Ongun, Melike [1 ]
Lokras, Abhijeet Girish [1 ]
Baghel, Saahil [1 ]
Shi, Zhenning [1 ]
Schmidt, Signe Tandrup [2 ]
Franzyk, Henrik [3 ]
Rades, Thomas [1 ]
Sebastiani, Federica [1 ,4 ]
Thakur, Aneesh [1 ,5 ]
Foged, Camilla [1 ]
机构
[1] Univ Copenhagen, Fac Hlth & Med Sci, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark
[2] Statens Serum Inst, Dept Infect Dis Immunol, Artillerivej 5, DK-2300 Copenhagen, Denmark
[3] Univ Copenhagen, Fac Hlth & Med Sci, Dept Drug Design & Pharmacol, Jagtvej 162, DK-2100 Copenhagen, Denmark
[4] Lund Univ, Dept Chem, Div Phys Chem, S-22100 Lund, Sweden
[5] Univ Saskatchewan, Vaccine & Infect Dis Org, 120 Vet Rd, Saskatoon, SK S7N 5E3, Canada
关键词
mRNA therapeutics; Lipid nanoparticle; Mucosal delivery; Pulmonary/nasal administration; Vaccine; Nanomedicine; IN-VIVO; THERAPEUTICS; OPTIMIZATION; MUCOSAL;
D O I
10.1016/j.ejpb.2024.114266
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Design of inhalable mRNA therapeutics is promising because local administration in the respiratory tract is minimally invasive and induces a local response. However, several challenges related to administration via inhalation and respiratory tract barriers have so far prevented the progress of inhaled mRNA therapeutics. Here, we investigated factors of importance for lipid nanoparticle (LNP)-mediated delivery of mRNA to the respiratory tract. We hypothesized that: (i) the PEG -lipid content is important for providing colloidal stability during aerosolization and for mucosal delivery, (ii) the PEG -lipid content influences the expression of mRNA-encoded protein in the lungs, and (iii) the route of administration (nasal versus pulmonary) affects mRNA delivery in the lungs. In this study, we aimed to optimize the PEG -lipid content for mucosal delivery and to investigate the effect of administration route on the kinetics of protein expression. Our results show that increasing the PEG -lipid content improves the colloidal stability during the aerosolization process, but has a negative impact on the transfection efficiency in vitro . The kinetics of protein expression in vivo is dependent on the route of administration, and we found that pulmonary administration of mRNA-LNPs to mice results in more durable protein expression than nasal administration. These results demonstrate that the design of the delivery system and the route of administration are important for achieving high mRNA transfection efficiency in the respiratory tract.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA [J].
Miao, Hao ;
Huang, Ke ;
Li, Yingwen ;
Li, Renjie ;
Zhou, Xudong ;
Shi, Jingyu ;
Tong, Zhenbo ;
Sun, Zhenhua ;
Yu, Aibing .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2023, 640
[22]   Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles [J].
Mui, Barbara L. ;
Tam, Ying K. ;
Jayaraman, Muthusamy ;
Ansell, Steven M. ;
Du, Xinyao ;
Tam, Yuen Yi C. ;
Lin, Paulo J. C. ;
Chen, Sam ;
Narayanannair, Jayaprakash K. ;
Rajeev, Kallanthottathil G. ;
Manoharan, Muthiah ;
Akinc, Akin ;
Maier, Martin A. ;
Cullis, Pieter ;
Madden, Thomas D. ;
Hope, Michael J. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2013, 2
[23]  
Ongun M, 2022, RNA TECHNOL, V13, P237, DOI 10.1007/978-3-031-08415-7_11
[24]   Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project [J].
Paget, John ;
Spreeuwenberg, Peter ;
Charu, Vivek ;
Taylor, Robert J. ;
Iuliano, A. Danielle ;
Bresee, Joseph ;
Simonsen, Lone ;
Viboud, Cecile .
JOURNAL OF GLOBAL HEALTH, 2019, 9 (02)
[25]   mRNA vaccines - a new era in vaccinology [J].
Pardi, Norbert ;
Hogan, Michael J. ;
Porter, Frederick W. ;
Weissman, Drew .
NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (04) :261-279
[26]   Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes [J].
Pardi, Norbert ;
Tuyishime, Steven ;
Muramatsu, Hiromi ;
Kariko, Katalin ;
Mui, Barbara L. ;
Tam, Ying K. ;
Madden, Thomas D. ;
Hope, Michael J. ;
Weissman, Drew .
JOURNAL OF CONTROLLED RELEASE, 2015, 217 :345-351
[27]   Mucosal vaccines for SARS-CoV-2: triumph of hope over experience [J].
Pilapitiya, Devaki ;
Wheatley, Adam K. ;
Tan, Hyon-Xhi .
EBIOMEDICINE, 2023, 92 :1-10
[28]   Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine [J].
Polack, Fernando P. ;
Thomas, Stephen J. ;
Kitchin, Nicholas ;
Absalon, Judith ;
Gurtman, Alejandra ;
Lockhart, Stephen ;
Perez, John L. ;
Perez Marc, Gonzalo ;
Moreira, Edson D. ;
Zerbini, Cristiano ;
Bailey, Ruth ;
Swanson, Kena A. ;
Roychoudhury, Satrajit ;
Koury, Kenneth ;
Li, Ping ;
Kalina, Warren V. ;
Cooper, David ;
Frenck, Robert W., Jr. ;
Hammitt, Laura L. ;
Tureci, Ozlem ;
Nell, Haylene ;
Schaefer, Axel ;
Unal, Serhat ;
Tresnan, Dina B. ;
Mather, Susan ;
Dormitzer, Philip R. ;
Sahin, Ugur ;
Jansen, Kathrin U. ;
Gruber, William C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (27) :2603-2615
[29]   Inhalable dry powder mRNA vaccines based on extracellular vesicles [J].
Popowski, Kristen D. ;
Moatti, Adele ;
Scull, Grant ;
Silkstone, Dylan ;
Lutz, Halle ;
Abad, Blanca Lopez de Juan ;
George, Arianna ;
Belcher, Elizabeth ;
Zhu, Dashuai ;
Mei, Xuan ;
Cheng, Xiao ;
Cislo, Megan ;
Ghodsi, Asma ;
Cai, Yuheng ;
Huang, Ke ;
Li, Junlang ;
Brown, Ashley C. ;
Greenbaum, Alon ;
Dinh, Phuong-Uyen C. ;
Cheng, Ke .
MATTER, 2022, 5 (09) :2960-2974
[30]   Current state and challenges in developing oral vaccines [J].
Ramirez, Julia E. Vela ;
Sharpe, Lindsey A. ;
Peppas, Nicholas A. .
ADVANCED DRUG DELIVERY REVIEWS, 2017, 114 :116-131