Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems

被引:3
作者
Guillin, Arnaud [1 ]
Nectoux, Boris [1 ]
Wu, Liming [2 ]
机构
[1] Univ Clermont Auvergne, Lab Math, F-63178 Aubiere, France
[2] Univ Blaise Pascal, Lab Math Appl, CNRS UMR 6620, F-63177 Aubiere, France
关键词
quasi-stationary distributions; Langevin process; Hamiltonian dynamics; metastability; molecular dynamics; ONE-DIMENSIONAL DIFFUSIONS; GENERAL STATE-SPACE; EXPONENTIAL CONVERGENCE; R-THEORY; DYNAMICS; CHAINS; ERGODICITY; TIME; APPROXIMATION; ASYMPTOTICS;
D O I
10.4171/JEMS/1418
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a general result on the existence and uniqueness of a quasi-stationary distribution mu (D) of a strongly Feller Markov process ( X-t , t > 0) killed when it exits a domain D, under some Lyapunov function condition. Our result covers the case of hypoelliptic damped Hamiltonian systems. Our method is based on a characterization of the essential spectral radius by means of Lyapunov functions and measures of noncompactness.
引用
收藏
页码:3047 / 3090
页数:44
相关论文
共 86 条
[21]   Lyapunov criteria for uniform convergence of conditional distributions of absorbed Markov processes [J].
Champagnat, Nicolas ;
Villemonais, Denis .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 135 :51-74
[22]   Criteria for Exponential Convergence to Quasi-Stationary Distributions and Applications to Multi-Dimensional Diffusions [J].
Champagnat, Nicolas ;
Coulibaly-Pasquier, Kolehe Abdoulaye ;
Villemonais, Denis .
SEMINAIRE DE PROBABILITES XLIX, 2018, 2215 :165-182
[23]  
Champagnat N, 2016, PROBAB THEORY REL, V164, P243, DOI 10.1007/s00440-014-0611-7
[24]   Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes [J].
Chazottes, J. -R. ;
Collet, P. ;
Meleard, S. .
PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (1-2) :285-332
[25]   Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space [J].
Cloez, Bertrand ;
Thai, Marie-Noemie .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (03) :680-702
[26]   Quasi-stationary distributions for structured birth and death processes with mutations [J].
Collet, Pierre ;
Martinez, Servet ;
Meleard, Sylvie ;
San Martin, Jaime .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) :191-231
[27]  
Collet Pierre., 2012, Quasi-stationary distributions: Markov chains, diffusions and dynamical systems
[28]  
Del Moral P., 2003, ESAIM-PROBAB STAT, V7, P171, DOI [DOI 10.1051/ps:2003001, DOI 10.1051/PS:2003001]
[29]  
Dellacherie C., 1980, Actualites Scientifiques et Industrielles, V1385
[30]  
Dellacherie C., 1975, Publications de l'Institut de Mathematique de l'Universite de Strasbourg, no. XV, Actualites Scientifiques et Industrielles, V1372