Artificial intelligence in ischemic stroke images: current applications and future directions

被引:10
作者
Liu, Ying [1 ,2 ]
Wen, Zhongjian [1 ,3 ]
Wang, Yiren [1 ,3 ]
Zhong, Yuxin [4 ]
Wang, Jianxiong [5 ]
Hu, Yiheng [6 ]
Zhou, Ping [7 ]
Guo, Shengmin [8 ]
机构
[1] Southwest Med Univ, Sch Nursing, Luzhou, Peoples R China
[2] Southwest Med Univ, Affiliated Hosp, Dept Oncol, Luzhou, Peoples R China
[3] Southwest Med Univ, Wound Healing Basic Res & Clin Applicat Key Lab Lu, Luzhou, Peoples R China
[4] Guizhou Med Univ, Sch Nursing, Guiyang, Peoples R China
[5] Southwest Med Univ, Affiliated Hosp, Dept Rehabil, Luzhou, Peoples R China
[6] Southwest Med Univ, Dept Med Imaging, Luzhou, Peoples R China
[7] Southwest Med Univ, Affiliated Hosp, Dept Radiol, Luzhou, Peoples R China
[8] Southwest Med Univ, Affiliated Hosp, Nursing Dept, Luzhou, Peoples R China
关键词
ischemic stroke; medical imaging; deep learning; machine learning; artificial intelligence; prediction model; HEMORRHAGIC TRANSFORMATION; INTRAVENOUS THROMBOLYSIS; COMPUTED-TOMOGRAPHY; SEGMENTATION; PREDICTION; THERAPY; MODEL; MRI; CT;
D O I
10.3389/fneur.2024.1418060
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
This paper reviews the current research progress in the application of Artificial Intelligence (AI) based on ischemic stroke imaging, analyzes the main challenges, and explores future research directions. This study emphasizes the application of AI in areas such as automatic segmentation of infarct areas, detection of large vessel occlusion, prediction of stroke outcomes, assessment of hemorrhagic transformation risk, forecasting of recurrent ischemic stroke risk, and automatic grading of collateral circulation. The research indicates that Machine Learning (ML) and Deep Learning (DL) technologies have tremendous potential for improving diagnostic accuracy, accelerating disease identification, and predicting disease progression and treatment responses. However, the clinical application of these technologies still faces challenges such as limitations in data volume, model interpretability, and the need for real-time monitoring and updating. Additionally, this paper discusses the prospects of applying large language models, such as the transformer architecture, in ischemic stroke imaging analysis, emphasizing the importance of establishing large public databases and the need for future research to focus on the interpretability of algorithms and the comprehensiveness of clinical decision support. Overall, AI has significant application value in the management of ischemic stroke; however, existing technological and practical challenges must be overcome to achieve its widespread application in clinical practice.
引用
收藏
页数:12
相关论文
共 67 条
[51]   Hybrid UNet transformer architecture for ischemic stoke segmentation with MRI and CT datasets [J].
Soh, Wei Kwek ;
Rajapakse, Jagath C. .
FRONTIERS IN NEUROSCIENCE, 2023, 17
[52]   Improvement of automatic ischemic stroke lesion segmentation in CT perfusion maps using a learned deep neural network [J].
Soltanpour, Mohsen ;
Greiner, Russ ;
Boulanger, Pierre ;
Buck, Brian .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137 (137)
[53]   Acute ischaemic stroke interventions: large vessel occlusion and beyond [J].
Sweid, Ahmad ;
Hammoud, Batoul ;
Ramesh, Sunidhi ;
Wong, Daniella ;
Alexander, Tyler D. ;
Weinberg, Joshua Harrison ;
Deprince, Maureen ;
Dougherty, Jaime ;
Maamari, Dimitri Jean-Mickael ;
Tjoumakaris, Stavropoula ;
Zarzour, Hekmat ;
Gooch, Michael R. ;
Herial, Nabeel ;
Romo, Victor ;
Hasan, David M. ;
Rosenwasser, Robert H. ;
Jabbour, Pascal .
STROKE AND VASCULAR NEUROLOGY, 2020, 5 (01) :80-85
[54]   Brain ischemia: CT and MRI techniques in acute ischemic stroke [J].
Vilela, Pedro ;
Rowley, Howard A. .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 96 :162-172
[55]   Multimodal Token Fusion for Vision Transformers [J].
Wang, Yikai ;
Chen, Xinghao ;
Cao, Lele ;
Huang, Wenbing ;
Sun, Fuchun ;
Wang, Yunhe .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :12176-12185
[56]   Multimodal CT in Acute Stroke [J].
Wannamaker, R. ;
Buck, B. ;
Butcher, K. .
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2019, 19 (09)
[57]   Advances in research and application of artificial intelligence and radiomic predictive models based on intracranial aneurysm images [J].
Wen, Zhongjian ;
Wang, Yiren ;
Zhong, Yuxin ;
Hu, Yiheng ;
Yang, Cheng ;
Peng, Yan ;
Zhan, Xiang ;
Zhou, Ping ;
Zeng, Zhen .
FRONTIERS IN NEUROLOGY, 2024, 15
[58]   Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms [J].
Woo, Ilsang ;
Lee, Areum ;
Jung, Seung Chai ;
Lee, Hyunna ;
Kim, Namkug ;
Cho, Se Jin ;
Kim, Donghyun ;
Lee, Jungbin ;
Sunwoo, Leonard ;
Kang, Dong-Wha .
KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (08) :1275-1284
[59]   Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data [J].
Wu, Ona ;
Winzeck, Stefan ;
Giese, Anne-Katrin ;
Hancock, Brandon L. ;
Etherton, Mark R. ;
Bouts, Mark J. R. J. ;
Donahue, Kathleen ;
Schirmer, Markus D. ;
Irie, Robert E. ;
Mocking, Steven J. T. ;
McIntosh, Elissa C. ;
Bezerra, Raquel ;
Kamnitsas, Konstantinos ;
Frid, Petrea ;
Wasselius, Johan ;
Cole, John W. ;
Xu, Huichun ;
Holmegaard, Lukas ;
Jimenez-Conde, Jordi ;
Lemmens, Robin ;
Lorentzen, Eric ;
McArdle, Patrick F. ;
Meschia, James F. ;
Roquer, Jaume ;
Rundek, Tatjana ;
Sacco, Ralph L. ;
Schmidt, Reinhold ;
Sharma, Pankaj ;
Slowik, Agnieszka ;
Stanne, Tara M. ;
Thijs, Vincent ;
Vagal, Achala ;
Woo, Daniel ;
Bevan, Stephen ;
Kittner, Steven J. ;
Mitchell, Braxton D. ;
Rosand, Jonathan ;
Worrall, Bradford B. ;
Jern, Christina ;
Lindgren, Arne G. ;
Maguire, Jane ;
Rost, Natalia S. .
STROKE, 2019, 50 (07) :1734-1741
[60]   A feature-enhanced network for stroke lesion segmentation from brain MRI images [J].
Wu Z. ;
Zhang X. ;
Li F. ;
Wang S. ;
Li J. .
Computers in Biology and Medicine, 2024, 174