Artificial intelligence in ischemic stroke images: current applications and future directions

被引:10
作者
Liu, Ying [1 ,2 ]
Wen, Zhongjian [1 ,3 ]
Wang, Yiren [1 ,3 ]
Zhong, Yuxin [4 ]
Wang, Jianxiong [5 ]
Hu, Yiheng [6 ]
Zhou, Ping [7 ]
Guo, Shengmin [8 ]
机构
[1] Southwest Med Univ, Sch Nursing, Luzhou, Peoples R China
[2] Southwest Med Univ, Affiliated Hosp, Dept Oncol, Luzhou, Peoples R China
[3] Southwest Med Univ, Wound Healing Basic Res & Clin Applicat Key Lab Lu, Luzhou, Peoples R China
[4] Guizhou Med Univ, Sch Nursing, Guiyang, Peoples R China
[5] Southwest Med Univ, Affiliated Hosp, Dept Rehabil, Luzhou, Peoples R China
[6] Southwest Med Univ, Dept Med Imaging, Luzhou, Peoples R China
[7] Southwest Med Univ, Affiliated Hosp, Dept Radiol, Luzhou, Peoples R China
[8] Southwest Med Univ, Affiliated Hosp, Nursing Dept, Luzhou, Peoples R China
关键词
ischemic stroke; medical imaging; deep learning; machine learning; artificial intelligence; prediction model; HEMORRHAGIC TRANSFORMATION; INTRAVENOUS THROMBOLYSIS; COMPUTED-TOMOGRAPHY; SEGMENTATION; PREDICTION; THERAPY; MODEL; MRI; CT;
D O I
10.3389/fneur.2024.1418060
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
This paper reviews the current research progress in the application of Artificial Intelligence (AI) based on ischemic stroke imaging, analyzes the main challenges, and explores future research directions. This study emphasizes the application of AI in areas such as automatic segmentation of infarct areas, detection of large vessel occlusion, prediction of stroke outcomes, assessment of hemorrhagic transformation risk, forecasting of recurrent ischemic stroke risk, and automatic grading of collateral circulation. The research indicates that Machine Learning (ML) and Deep Learning (DL) technologies have tremendous potential for improving diagnostic accuracy, accelerating disease identification, and predicting disease progression and treatment responses. However, the clinical application of these technologies still faces challenges such as limitations in data volume, model interpretability, and the need for real-time monitoring and updating. Additionally, this paper discusses the prospects of applying large language models, such as the transformer architecture, in ischemic stroke imaging analysis, emphasizing the importance of establishing large public databases and the need for future research to focus on the interpretability of algorithms and the comprehensiveness of clinical decision support. Overall, AI has significant application value in the management of ischemic stroke; however, existing technological and practical challenges must be overcome to achieve its widespread application in clinical practice.
引用
收藏
页数:12
相关论文
共 67 条
[1]   Prediction of Long-Term Stroke Recurrence Using Machine Learning Models [J].
Abedi, Vida ;
Avula, Venkatesh ;
Chaudhary, Durgesh ;
Shahjouei, Shima ;
Khan, Ayesha ;
Griessenauer, Christoph J. ;
Li, Jiang ;
Zand, Ramin .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (06) :1-16
[2]   Providing clinical context to the spatio-temporal analysis of 4D CT perfusion to predict acute ischemic stroke lesion outcomes [J].
Amador, Kimberly ;
Gutierrez, Alejandro ;
Winder, Anthony ;
Fiehler, Jens ;
Wilms, Matthias ;
Forkert, Nils D. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 149
[3]   Pre-treatment risk markers for hemorrhagic transformation in posterior circulation acute ischemic stroke treated with reperfusion therapy [J].
Ancelet, Claire ;
Neveu, Sophie ;
Venditti, Laura ;
Cortese, Jonathan ;
Chassin, Oliver ;
Pelissou, Coralie ;
Berthou, Elsa Talab ;
Babin, Matthias ;
Nasser, Ghaidaa ;
Benoudiba, Farida ;
Legris, Nicolas ;
Riviere, Mariana Sarov ;
Chausson, Nicolas ;
Spelle, Laurent ;
Denier, Christian .
JOURNAL OF NEUROLOGY, 2023, 270 (11) :5493-5501
[4]   Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging [J].
Azizi, Shekoofeh ;
Culp, Laura ;
Freyberg, Jan ;
Mustafa, Basil ;
Baur, Sebastien ;
Kornblith, Simon ;
Chen, Ting ;
Tomasev, Nenad ;
Mitrovic, Jovana ;
Strachan, Patricia ;
Mahdavi, S. Sara ;
Wulczyn, Ellery ;
Babenko, Boris ;
Walker, Megan ;
Loh, Aaron ;
Chen, Po-Hsuan Cameron ;
Liu, Yuan ;
Bavishi, Pinal ;
McKinney, Scott Mayer ;
Winkens, Jim ;
Roy, Abhijit Guha ;
Beaver, Zach ;
Ryan, Fiona ;
Krogue, Justin ;
Etemadi, Mozziyar ;
Telang, Umesh ;
Liu, Yun ;
Peng, Lily ;
Corrado, Greg S. ;
Webster, Dale R. ;
Fleet, David ;
Hinton, Geoffrey ;
Houlsby, Neil ;
Karthikesalingam, Alan ;
Norouzi, Mohammad ;
Natarajan, Vivek .
NATURE BIOMEDICAL ENGINEERING, 2023, 7 (06) :756-+
[5]   Automatic triaging of acute ischemic stroke patients for reperfusion therapies using Artificial Intelligence methods and multiple MRI features: A review [J].
Ben Alaya, Ines ;
Limam, Hela ;
Kraiem, Tarek .
CLINICAL IMAGING, 2023, 104
[6]   Federal learning-based a dual-branch deep learning model for colon polyp segmentation [J].
Cao, Xuguang ;
Fan, Kefeng ;
Ma, Huilin .
Multimedia Tools and Applications, 2025, 84 (12) :10425-10446
[7]   Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison [J].
Chalela, Julio A. ;
Kidwell, Chelsea S. ;
Nentwich, Lauren M. ;
Luby, Marie ;
Butman, John A. ;
Demchuk, Andrew M. ;
Hill, Michael D. ;
Patronas, Nicholas ;
Latour, Lawrence ;
Warach, Steven .
LANCET, 2007, 369 (9558) :293-298
[8]   Can machine learning of post-procedural cone-beam CT images in acute ischemic stroke improve the detection of 24-h hemorrhagic transformation? A preliminary study [J].
Da Ros, Valerio ;
Duggento, Andrea ;
Cavallo, Armando Ugo ;
Bellini, Luigi ;
Pitocchi, Francesca ;
Toschi, Nicola ;
Mascolo, Alfredo Paolo ;
Sallustio, Fabrizio ;
Di Giuliano, Francesca ;
Diomedi, Marina ;
Floris, Roberto ;
Garaci, Francesco ;
Zelenak, Kamil ;
Maestrini, Ilaria .
NEURORADIOLOGY, 2023, 65 (03) :599-608
[9]   Machine learning applications in stroke medicine: advancements, challenges, and future prospectives [J].
Daidone, Mario ;
Ferrantelli, Sergio ;
Tuttolomondo, Antonino .
NEURAL REGENERATION RESEARCH, 2024, 19 (04) :769-773
[10]   Federated Learning for Smart Healthcare: A Survey [J].
Dinh C Nguyen ;
Quoc-Viet Pham ;
Pathirana, Pubudu N. ;
Ding, Ming ;
Seneviratne, Aruna ;
Lin, Zihuai ;
Dobre, Octavia ;
Hwang, Won-Joo .
ACM COMPUTING SURVEYS, 2023, 55 (03)