A VARIANT OF D'ALEMBERT'S AND WILSON'S FUNCTIONAL EQUATIONS FOR MATRIX VALUED FUNCTIONS

被引:0
|
作者
Chahbi, Abdellatif [1 ]
Chakiri, Mohamed [1 ]
Elqorachi, Elhoucien [1 ]
机构
[1] Ibn Zohr Univ, Fac Sci, Dept Math, Equipe Equat Fonct & Applicat, Agadir, Morocco
来源
关键词
Topological group; monoid; D'Alembert's equation; Wilson's equation; matrix; automorphism; involution; VECTOR;
D O I
10.4134/CKMS.c220073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given M a monoid with a neutral element e . We show that the solutions of d'Alembert's functional equation for n x n matrices Phi(pr, qs) + Phi (sp, rq) = 2 Phi(r, s)Phi(p, q), p, q, r, s is an element of M are abelian. Furthermore, we prove under additional assumption that the solutions of the n-dimensional mixed vector-matrix Wilson's functional equation {f(pr, qs) + f(sp, rq) = 2 Phi(r, s)f(p, q), {Phi(p, q) = Phi(q, p), p, q, r, s is an element of M are abelian. As an application we solve the first functional equation on groups for the particular case of n = 3 .
引用
收藏
页码:785 / 802
页数:18
相关论文
共 50 条