MULTIPLICITY OF WEAK SOLUTIONS FOR A (P(X), Q(X))-KIRCHHOFF EQUATION WITH NEUMANN BOUNDARY CONDITIONS

被引:2
作者
Ahmed, A. [1 ]
Vall, Mohamed Saad Bouh Elemine [2 ]
机构
[1] Univ Nouakchott, Fac Sci & Technol, Math & Comp Sci Dept, Nouakchott, Mauritania
[2] Univ Nouakchott, Profess Univ Inst, Dept Ind Engn & Appl Math, Nouakchott, Mauritania
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 04期
关键词
Nonlinear elliptic equations; weak solutions to PDEs; Ricceri's variational principle; double phase problems; Musielak-Orlicz-Sobolev spaces; NONHOMOGENEOUS DIFFERENTIAL-OPERATORS; REGULARITY CRITERION; ELLIPTIC EQUATION; SOBOLEV SPACES; EXISTENCE; FUNCTIONALS; FLUIDS;
D O I
10.11948/20230449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this study is to investigate the existence of infinitely many weak solutions for the (p(x), q(x))-Kirchhoff Neumann problem described by the following equation : {- (a(1) + a(2) integral Omega 1/p(x) |del u|(p(x)) dx) Delta(p(center dot))u - (b(1) + b(2) integral(Omega) 1/q(x) |del u(|q(x)) dx) Delta(q(center dot))u +lambda(x)(|u|(p(x)-2)u + |u|(q(x)-2)u = f(1)(x, u) + f(2)(x, u) in Omega, partial derivative u/partial derivative nu = 0 on partial derivative Omega. By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.
引用
收藏
页码:2441 / 2465
页数:25
相关论文
共 46 条
[1]   Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz-Sobolev spaces [J].
Afrouzi, Ghasem A. ;
Heidarkhani, Shapour ;
Shokooh, Saeid .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (11) :1505-1521
[2]   PERTURBED NONLINEAR ELLIPTIC NEUMANN PROBLEMS INVOLVING ANISOTROPIC SOBOLEV SPACES WITH VARIABLE EXPONENTS [J].
Ahmed, A. ;
Vall, M. S. B. Elemine .
MATEMATICHE, 2022, 77 (02) :465-486
[3]   A multiplicity result for a (p, q)-Schrodinger-Kirchhoff type equation [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) :943-984
[4]   Fractional double-phase patterns: concentration and multiplicity of solutions [J].
Ambrosio, Vincenzo ;
Radulescu, Vicentiu D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 :101-145
[5]   Concentration phenomena for a fractional Schrodinger-Kirchhoff type equation [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) :615-645
[6]   A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
[7]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[8]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287
[9]   The Neumann problem for a class of generalized Kirchhoff-type potential systems [J].
Chems Eddine, Nabil ;
Repovs, Dusan D. .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[10]  
Chlebicka I., 2021, PARTIAL DIFFERENTIAL