MULTIPLICITY OF WEAK SOLUTIONS FOR A (P(X), Q(X))-KIRCHHOFF EQUATION WITH NEUMANN BOUNDARY CONDITIONS

被引:0
作者
Ahmed, A. [1 ]
Vall, Mohamed Saad Bouh Elemine [2 ]
机构
[1] Univ Nouakchott, Fac Sci & Technol, Math & Comp Sci Dept, Nouakchott, Mauritania
[2] Univ Nouakchott, Profess Univ Inst, Dept Ind Engn & Appl Math, Nouakchott, Mauritania
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 04期
关键词
Nonlinear elliptic equations; weak solutions to PDEs; Ricceri's variational principle; double phase problems; Musielak-Orlicz-Sobolev spaces; NONHOMOGENEOUS DIFFERENTIAL-OPERATORS; REGULARITY CRITERION; ELLIPTIC EQUATION; SOBOLEV SPACES; EXISTENCE; FUNCTIONALS; FLUIDS;
D O I
10.11948/20230449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this study is to investigate the existence of infinitely many weak solutions for the (p(x), q(x))-Kirchhoff Neumann problem described by the following equation : {- (a(1) + a(2) integral Omega 1/p(x) |del u|(p(x)) dx) Delta(p(center dot))u - (b(1) + b(2) integral(Omega) 1/q(x) |del u(|q(x)) dx) Delta(q(center dot))u +lambda(x)(|u|(p(x)-2)u + |u|(q(x)-2)u = f(1)(x, u) + f(2)(x, u) in Omega, partial derivative u/partial derivative nu = 0 on partial derivative Omega. By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.
引用
收藏
页码:2441 / 2465
页数:25
相关论文
共 46 条
  • [1] Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz-Sobolev spaces
    Afrouzi, Ghasem A.
    Heidarkhani, Shapour
    Shokooh, Saeid
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (11) : 1505 - 1521
  • [2] PERTURBED NONLINEAR ELLIPTIC NEUMANN PROBLEMS INVOLVING ANISOTROPIC SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Ahmed, A.
    Vall, M. S. B. Elemine
    [J]. MATEMATICHE, 2022, 77 (02): : 465 - 486
  • [3] A multiplicity result for a (p, q)-Schrodinger-Kirchhoff type equation
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 943 - 984
  • [4] Fractional double-phase patterns: concentration and multiplicity of solutions
    Ambrosio, Vincenzo
    Radulescu, Vicentiu D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 101 - 145
  • [5] Concentration phenomena for a fractional Schrodinger-Kirchhoff type equation
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) : 615 - 645
  • [6] A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
  • [7] On the well-posedness of the Kirchhoff string
    Arosio, A
    Panizzi, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) : 305 - 330
  • [8] Double phase problems with variable growth
    Cencelj, Matija
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 270 - 287
  • [9] The Neumann problem for a class of generalized Kirchhoff-type potential systems
    Chems Eddine, Nabil
    Repovs, Dusan D.
    [J]. BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [10] Chlebicka I., 2021, Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces