Integrability structures in string theory

被引:2
作者
Gubarev, K. A. [1 ]
Musaev, E. T. [1 ,2 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Inst Skii per 9, Dolgoprudnyi 141701, Moscow Region, Russia
[2] Natl Res Ctr, Kurchatov Inst, Pl Akad Kurchatova 1, Moscow 123182, Russia
基金
俄罗斯科学基金会;
关键词
integrability; Nambu structure; loop algebra; membranes; M-theory; YANG-BAXTER EQUATION; ADS/CFT INTEGRABILITY; T-DUALITY; U-DUALITY; D-BRANES; DEFORMATIONS; FIELDS; CLASSIFICATION; DUALISATION; SYMMETRIES;
D O I
10.3367/UFNe.2023.06.039407
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This review is a collection of various methods and observations relevant to structures in three-dimensional systems similar to those responsible for the integrability of twodimensional systems. Particular focus is on Nambu structures and loop variables naturally appearing in membrane dynamics. While reviewing each topic in more detail, we emphasize connections among them and speculate on possible relations to membrane integrability.
引用
收藏
页码:219 / 250
页数:32
相关论文
共 182 条
[1]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[2]   N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals [J].
Aharony, Ofer ;
Bergman, Oren ;
Jafferis, Daniel Louis ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (10)
[3]   Wilson surface observables from equivariant cohomology [J].
Alekseev, Anton ;
Chekeres, Olga ;
Mnev, Pavel .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11) :1-22
[4]   A new approach to integrable theories in any dimension [J].
Alvarez, O ;
Ferreira, LA ;
Guillen, JS .
NUCLEAR PHYSICS B, 1998, 529 (03) :689-736
[5]   INTEGRABLE THEORIES AND LOOP SPACES: FUNDAMENTALS, APPLICATIONS AND NEW DEVELOPMENTS [J].
Alvarez, Orlando ;
Ferreira, L. A. ;
Sanchez-Guillen, J. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (10) :1825-1888
[6]  
[Anonymous], 1978, SOV PHYS JETP, V47, P1017
[7]  
[Anonymous], 2012, Beisert Net al. Lett. Math. Phys., V99, P3
[8]  
Aratyn H, 1996, P 8 JORG 2 SWIEC SUM, P419
[9]   Yang-Baxter σ-models, conformal twists, and noncommutative Yang-Mills theory [J].
Araujo, T. ;
Bakhmatov, I. ;
Colgain, E. O. ;
Sakamoto, J. ;
Sheikh-Jabbari, M. M. ;
Yoshida, K. .
PHYSICAL REVIEW D, 2017, 95 (10)
[10]   Conformal twists, Yang-Baxter σ-models & holographic noncommutativity [J].
Araujo, Thiago ;
Bakhmatov, Ilya ;
Colgain, Eoin O. ;
Sakamoto, Jun-ichi ;
Sheikh-Jabbari, Mohammad M. ;
Yoshida, Kentaroh .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (23)