A framework for developing an attitude determination and control system simulator for Cubesats: Processor-in-loop testing approach

被引:3
作者
El Wafi, Ilyas [1 ,2 ,3 ,5 ]
Haloua, Mohamed [1 ,3 ]
Guennoun, Zouhair [1 ,2 ,3 ]
Moudden, Zakaria [4 ]
机构
[1] Mohammadia Sch Engineers, Dept Elect Engn, Av Ibn sina, Rabat 10080, Morocco
[2] Univ Ctr Res Space Technol, Av Ibn sina, Rabat 10080, Morocco
[3] Mohammed V Univ, Av Ibn sina, Rabat 10080, Morocco
[4] Royal Ctr Space Studies & Res, Av Allal al fassi & Sanawbar, Rabat 10100, Morocco
[5] Mohammadia Sch Engineers, Av Ibn sina, Rabat 10080, Morocco
关键词
Attitude control; Attitude determination; ADCS; Cubesat; Extended Kalman filter; Nonlinear control; TRACKING CONTROLLER; SPACECRAFT; SATELLITE;
D O I
10.1016/j.rineng.2024.102201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The outbreak of miniaturized satellites is increasingly demanding well -performing attitude determination and control systems (ADCS). Testing an ADCS directly using hardware is extremely costly and risky, whereas testing it using only computer simulation does not yield realistic enough results. Therefore, a detailed framework for developing an ADCS simulator with processor -in -the -loop testing for low -earth orbit Cubesats is established in this paper. In particular, the study focuses on the implementation of the algorithms on a STM32 with ARM Cortex CPU for efficient testing and prototyping. This is done by formulating a quaternion-based satellite dynamic model equiped with a three -axis magnetorquers and a set of pyramidal cluster of reaction wheels for high pointing capabilities. Prominently used sensors are modeled so that the attitude can be estimated using a multiplicative extended Kalman filter. For attitude control, several modes are developed based on different mission stages, and a simplified less burdensome control switching strategy is proposed to maintain stability with minimal computation and energy resources. To test the applicability of the simulator, an ADCS is designed to meet the requirements of the recent low -atmosphere measurement missions. The results are analyzed in accordance with the ESA ECSS standards, and the assessment shows that the specifications can be met with a safe margin, leaving room for unmodeled errors to be taken into account in later stages of the design. Additionally, the proposed control strategy gives various possibilities for missions with different types of objectives, furthermore the framework's flexibility provides easy modification of any part for the user's specific needs.
引用
收藏
页数:16
相关论文
共 51 条
[1]   International Geomagnetic Reference Field: the thirteenth generation [J].
Alken, P. ;
Thebault, E. ;
Beggan, C. D. ;
Amit, H. ;
Aubert, J. ;
Baerenzung, J. ;
Bondar, T. N. ;
Brown, W. J. ;
Califf, S. ;
Chambodut, A. ;
Chulliat, A. ;
Cox, G. A. ;
Finlay, C. C. ;
Fournier, A. ;
Gillet, N. ;
Grayver, A. ;
Hammer, M. D. ;
Holschneider, M. ;
Huder, L. ;
Hulot, G. ;
Jager, T. ;
Kloss, C. ;
Korte, M. ;
Kuang, W. ;
Kuvshinov, A. ;
Langlais, B. ;
Leger, J. -M. ;
Lesur, V. ;
Livermore, P. W. ;
Lowes, F. J. ;
Macmillan, S. ;
Magnes, W. ;
Mandea, M. ;
Marsal, S. ;
Matzka, J. ;
Metman, M. C. ;
Minami, T. ;
Morschhauser, A. ;
Mound, J. E. ;
Nair, M. ;
Nakano, S. ;
Olsen, N. ;
Pavon-Carrasco, F. J. ;
Petrov, V. G. ;
Ropp, G. ;
Rother, M. ;
Sabaka, T. J. ;
Sanchez, S. ;
Saturnino, D. ;
Schnepf, N. R. .
EARTH PLANETS AND SPACE, 2021, 73 (01)
[2]   Attitude determination and control system simulation and analysis for low-cost micro-satellites [J].
Anderson, AD ;
Sellers, JJ ;
Hashida, Y .
2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, :2935-2949
[3]  
[Anonymous], 2011, 8 INT ESA C GUID NAV
[4]   Satellite attitude control using a novel Constrained Magnetic Linear Quadratic Regulator [J].
Arefkhani, Hamed ;
Sadati, Sayed Hossein ;
Shahravi, Morteza .
CONTROL ENGINEERING PRACTICE, 2020, 101 (101)
[5]   Magnetic Detumbling of a Rigid Spacecraft [J].
Avanzini, Giulio ;
Giulietti, Fabrizio .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (04) :1326-1334
[6]  
Bishop R.L., 2019, The low-latitude ionosphere/thermosphere enhancements in density (llited) mission
[7]   Regenerative Power-Optimal Reaction Wheel Attitude Control [J].
Blenden, Robin ;
Schaub, Hanspeter .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (04) :1208-1217
[8]   Faster Fixed-Time Control of Flexible Spacecraft Attitude Stabilization [J].
Cao, Lu ;
Xiao, Bing ;
Golestani, Mehdi ;
Ran, Dechao .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (02) :1281-1290
[9]   Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty [J].
Cao, Lu ;
Xiao, Bing ;
Golestani, Mehdi .
NONLINEAR DYNAMICS, 2020, 100 (03) :2505-2519
[10]   Robust double gain unscented Kalman filter for small satellite attitude estimation [J].
Cao, Lu ;
Yang, Weiwei ;
Li, Hengnian ;
Zhang, Zhidong ;
Shi, Jianjun .
ADVANCES IN SPACE RESEARCH, 2017, 60 (03) :499-512