Robust Inference for the Skew Normal Regression Model Under Type II Censoring

被引:0
作者
Balay, Iklim Gedik [1 ]
Senoglu, Birdal [2 ]
机构
[1] Ankara Yildirim Beyazit Univ, Dept Banking & Finance, TR-06760 Ankara, Turkiye
[2] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkiye
来源
THAILAND STATISTICIAN | 2024年 / 22卷 / 03期
关键词
Reliability; modified maximum likelihood estimators; Monte Carlo simulation; skewness; censored samples; MULTIVARIATE; DISTRIBUTIONS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we concentrate on statistical inference for the regression model with skew normal (SN) distributed error terms under type-II censoring. Iteratively reweighting algorithm (IRA) is used for computing maximum likelihood (ML) estimates of the model parameters, see Arslan (2009). We also use the non-iterative modified maximum likelihood (MML) methodology to obtain the explicit estimators of the model parameters, see Tiku (1967). Additionally, confidence intervals for the model parameters are constructed based on the proposed estimators. Monte Carlo simulation study is used to compare the efficiencies of the ML and MML estimators, and also the performances of the corresponding confidence intervals.
引用
收藏
页码:547 / 564
页数:18
相关论文
共 16 条
  • [1] Azais JM, 2005, Le modle linaire par l'exemple: rgression, analyse de la variance et plans d'expriences illustres avec R, SAS et Splus
  • [2] Regression: simple linear
    Bangdiwala, Shrikant I.
    [J]. INTERNATIONAL JOURNAL OF INJURY CONTROL AND SAFETY PROMOTION, 2018, 25 (01) : 113 - 115
  • [3] Influence diagnostics for elliptical multivariate linear regression models
    Díaz-García, JA
    Rojas, MG
    Leiva-Sánchez, V
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (03) : 625 - 641
  • [4] Djaballah-Djeddour K, 2015, Aust J Stat., V51, P16
  • [5] Ferreira JTAS, 2007, STAT SINICA, V17, P505
  • [6] Local influence in elliptical linear regression models
    Galea, M
    Paula, GA
    Bolfarine, H
    [J]. STATISTICIAN, 1997, 46 (01): : 71 - 79
  • [7] Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images
    Gaso, Deborah V.
    Berger, Andres G.
    Ciganda, Veronica S.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 159 : 75 - 83
  • [8] Huber P.J., 2004, Robust Statistics, V523
  • [9] Multiple linear regression model under nonnormality
    Islam, MQ
    Tiku, ML
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (10) : 2443 - 2467
  • [10] Lim KS, Encyclopedia of Mathematics