Thermo-economic analysis and multi-objective optimization of cryogenic CO2 capture systems based on liquefied natural gas cold energy utilization

被引:2
作者
Shu, Gequn [1 ,2 ]
Liu, Borui [1 ]
Tian, Hua [1 ]
Li, Ligeng [1 ]
Sun, Rui [1 ]
Wang, Xuan [1 ]
机构
[1] Tianjin Univ, State Key Lab Engn, Tianjin 300072, Peoples R China
[2] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 05期
关键词
Cryogenic carbon capture; LNG utilization; Process improvements; Tech-economic evaluation; CARBON-DIOXIDE; HEAT; CONFIGURATIONS; MEMBRANE; CYCLE;
D O I
10.1016/j.jece.2024.113531
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Utilizing liquefied natural gas (LNG) cold energy is a novel idea to reduce energy consumption of cryogenic CO2 capture. Two innovative configurations, pre-cooling system and post-expansion system, are introduced and compared with basic system to efficiently and economically harness cold energy. The thermo-economic performance, evaluated from environment, energy and economy perspectives, is thoroughly investigated under a limited LNG flow rate on various design conditions. The thermo-economic performance of three systems in actual operation is optimized by Non-dominant Sorting Genetic Algorithm-II. Results indicate that post-expansion system exhibits the most favorable thermo-economic performance, achieving process simplification, CO2 recovery, exergy efficiency and levelized cost of CO2 capture of 95.64 %, 32.05 % and 82.41 $/tCO2, respectively. Comparison with other technology pathways reveals that cryogenic capture is conducive to cleaner production under similar CO2 concentration levels. The methodology and results will contribute to future academic research and industrial design in the field of cryogenic CO2 capture.
引用
收藏
页数:16
相关论文
共 46 条
[1]   Insight into the effect of pressure on the CO2 capture capacity and kinetics by a biochar-ionic liquid composite [J].
Arjona-Jaime, Paola ;
Isaacs-Paez, Elizabeth D. ;
Nieto-Delgado, Cesar ;
Chazaro-Ruiz, Luis F. ;
Rangel-Mendez, Rene .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (01)
[2]   Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms [J].
Atashkari, K ;
Nariman-Zadeh, N ;
Pilechi, A ;
Jamali, A ;
Yao, X .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (11) :1061-1071
[3]  
Baxter L.L., 2009, 26 ANN INT PITTSBURG
[4]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[5]   Membrane technologies for CO2 separation [J].
Brunetti, A. ;
Scura, F. ;
Barbieri, G. ;
Drioli, E. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) :115-125
[6]  
Burt S., 2009, P 34 INT TECHN C CLE
[7]   Energy, exergy, economic and environmental (4E) analysis of a cryogenic carbon purification unit with membrane for oxyfuel cement plant flue gas [J].
Costa, Alexis ;
Coppitters, Diederik ;
Dubois, Lionel ;
Contino, Francesco ;
Thomas, Diane ;
De Weireld, Guy .
APPLIED ENERGY, 2024, 357
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]   Carbon dioxide. The heat capacity and vapor pressure of the solid. The heat of sublimation. Thermodynamic and spectroscopic values of the entropy [J].
Giauque, WF ;
Egan, CJ .
JOURNAL OF CHEMICAL PHYSICS, 1937, 5 :45-54
[10]   Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas [J].
Gilassi, Sina ;
Taghavi, Seyed Mohammad ;
Rodrigue, Denis ;
Kaliaguine, Serge .
SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 248