Divisibility of sums of some restricted partition numbers by 2, 3 and 4

被引:0
作者
Biswas, Sabi [1 ]
Saikia, Nipen [1 ]
机构
[1] Rajiv Gandhi Univ, Dept Math, Rono Hills, Doimukh 791112, Arunachal Prade, India
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 02期
关键词
Partitions into distinct odd parts; 2-core partition function; Partitions into odd parts; Sum of restricted partition numbers; Congruences; SQUARES; PARITY;
D O I
10.1007/s40590-024-00625-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that sums of partition numbers into distinct odd parts, sums of2-core partition numbers and sums of partition numbers into odd parts are divisible by 2, 3 and 4. For example, if p(od)(n)denotes the number of partitions into distinct odd parts of a positive integer n, then for non-negative integersand omega(k)=k(3k+1)/2: (infinity)& sum;(k=0)p(od)(48s+46-omega(-2k))+(infinity)& sum;(k=1)p(od)(48s+46-omega(2k))equivalent to 0 (mod 4)
引用
收藏
页数:19
相关论文
共 12 条
[1]  
Andrews G.E., 1976, THEORY PARTITIONS
[2]   Parity of sums of partition numbers and squares in arithmetic progressions [J].
Ballantine, Cristina ;
Merca, Mircea .
RAMANUJAN JOURNAL, 2017, 44 (03) :617-630
[3]   DIVISIBILITY OF SUMS OF PARTITION NUMBERS BY MULTIPLES OF 2 AND 3 [J].
Baruah, Nayandeep Deka .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, :271-279
[4]  
Berndt BC., 1991, RAMANUJANS NOTEBOOKS, DOI DOI 10.1007/978-1-4612-0965-2
[5]   Arithmetic properties of l-regular partitions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) :507-523
[6]  
Euler Leonhard., 1748, Introductio in analysin infinitorum
[7]  
Hirschhorn M. D., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P65
[8]  
Hirschhorn M.D., 2017, Developments in Mathematics, P49
[9]  
Hong L., IN PRESS
[10]  
Hu WD, 2019, CONTRIB DISCRET MATH, V14, P117