In-situ synthesis of yolk-shell Si/C anodes via ZnO transformation for high rate lithium-ion batteries

被引:6
作者
Fu, Siyue [1 ]
Zhou, Jianhua [1 ]
Wu, Guojing [1 ]
Liu, Wenping [1 ,4 ]
Qin, Haiqing [4 ]
Liu, Chenyan [1 ]
Sato, Tomohiro [5 ]
Peng, Ying [2 ]
Miao, Lei [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Precis Nav Technol & Applicat, Guilin 541004, Peoples R China
[3] Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Relat Astrophys, State Key Lab Featured Met Mat & Lifecycle Safety, Nanning 530004, Peoples R China
[4] China Nonferrous Met Guilin Geol & Min Co Ltd, Guangxi Key Lab Superhard Mat, Natl Engn Res Ctr Special Mineral Mat, Guangxi Technol Innovat Ctr Special Mineral Mat, Guilin 541004, Peoples R China
[5] Sinter Land INC, Amaikemachi 123, Nagaoka, Niigata 9402055, Japan
关键词
Lithium -ion batteries; Silicon anode; N -doped carbon; Yolk -shell structure; CARBON; GRAPHENE; DESIGN; PARTICLES;
D O I
10.1016/j.susmat.2024.e01021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The conceptual design of yolk -shell structured Si/C composite materials is considered an effective approach to enhancing the structural stability of silicon -based anode materials over long cycles. Here, for the first time, zinc oxide is used as both the internal sacrificial layer and the external coating layer reactant, allowing it to be transformed into voids and the carbon layer precursor during subsequent operations. These internal voids can buffer the volume expansion of silicon, ensuring the electrode's integrity during cycling. The ZIF layer formed through in -situ solvothermal reactions can effectively reduce the occurrence of isolated ZIF in the solvent, resulting in better coating of the nano-silicon particles. Compared to traditional processes for preparing yolkshell structures, this gentle synthesis strategy avoids the use of HF, offering a new direction for large-scale production. This optimized yolk -shell Si/C-0.70 M electrode exhibits excellent rate performance (specific capacity of 988 mA h g-1 at a high current density of 2 A g-1) and long-term cycling stability (specific capacity of 722 mA h g-1 after 300 cycles at a current density of 0.5 A g-1; reversible specific capacity of 557 mA h g-1 after 500 cycles). Therefore, this scalable study offers a new approach for safely producing yolk -shell anode materials with high cycle stability on a large scale.
引用
收藏
页数:10
相关论文
共 60 条
[1]   State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions [J].
Abu, Sayem M. ;
Hannan, M. A. ;
Lipu, M. S. Hossain ;
Ker, Pin Jern ;
Hossain, M. J. ;
Mahlia, T. M. Indra .
JOURNAL OF CLEANER PRODUCTION, 2023, 394
[2]   An overview: Current progress on hydrogen fuel cell vehicles [J].
Aminudin, M. A. ;
Kamarudin, S. K. ;
Lim, B. H. ;
Majilan, E. H. ;
Masdar, M. S. ;
Shaari, N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (11) :4371-4388
[3]   Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2018, 12 (05) :4993-5002
[4]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[5]   Si@SiOx/graphene hydrogel composite anode for lithium-ion battery [J].
Bai, Xuejun ;
Yu, Yueyang ;
Kung, Harold H. ;
Wang, Biao ;
Jiang, Jianming .
JOURNAL OF POWER SOURCES, 2016, 306 :42-48
[6]   Carbon Thin-Layer-Protected Active Sites for ZIF-8-Derived Nitrogen-Enriched Carbon Frameworks/Expanded Graphite as Metal-Free Catalysts for Oxygen Reduction in Acidic Media [J].
Chen, Hun ;
You, Shijie ;
Ma, Yuanyuan ;
Zhang, Chunyue ;
Jing, Baojian ;
Cai, Zhuang ;
Tang, Bo ;
Ren, Nanqi ;
Zou, Jinlong .
CHEMISTRY OF MATERIALS, 2018, 30 (17) :6014-6025
[7]   Emerging Organic Surface Chemistry for Si Anodes in Lithium-Ion Batteries: Advances, Prospects, and Beyond [J].
Chen, Zidong ;
Soltani, Askar ;
Chen, Yungui ;
Zhang, Qiaobao ;
Davoodi, Ali ;
Hosseinpour, Saman ;
Peukert, Wolfgang ;
Liu, Wei .
ADVANCED ENERGY MATERIALS, 2022, 12 (32)
[8]   Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries [J].
Cong, Ruye ;
Choi, Jin-Yeong ;
Song, Ju-Beom ;
Jo, Minsang ;
Lee, Hochun ;
Lee, Chang-Seop .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   The Status of Representative Anode Materials for Lithium-Ion Batteries [J].
Du, Chenyu ;
Zhao, Zengying ;
Liu, Hao ;
Song, Fangyu ;
Chen, Leilei ;
Cheng, Yan ;
Guo, Zhanhu .
CHEMICAL RECORD, 2023, 23 (05)
[10]   Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications [J].
Feng, Kun ;
Li, Matthew ;
Liu, Wenwen ;
Kashkooli, Ali Ghorbani ;
Xiao, Xingcheng ;
Cai, Mei ;
Chen, Zhongwei .
SMALL, 2018, 14 (08)