Interfacial Engineering of Ti3C2T x MXene Electrode Using g-C3N4 Nanosheets for High-Performance Supercapacitor in Neutral Electrolyte

被引:7
作者
Depijan, Manopat [1 ,2 ]
Hantanasirisakul, Kanit [3 ]
Pakawatpanurut, Pasit [1 ,2 ]
机构
[1] Mahidol Univ, Ctr Excellence Innovat Chem, Fac Sci, Dept Chem, Bangkok 10400, Thailand
[2] Mahidol Univ, Ctr Sustainable Energy & Green Mat, Fac Sci, Bangkok 10400, Thailand
[3] Vidyasirimedhi Inst Sci & Technol, Ctr Excellence Energy Storage Technol CEST, Sch Energy Sci & Engn, Dept Chem & Biomol Engn, Rayong 21210, Thailand
关键词
GRAPHITIC CARBON NITRIDE; CHEMICAL EXFOLIATION; CAPACITANCE; SURFACE; SPECTROSCOPY;
D O I
10.1021/acsomega.4c01353
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The superior performance of the Ti3C2Tx (MXene)-based supercapacitor in acidic electrolytes has recently gained much interest in the energy storage community. Nevertheless, its performance in most neutral electrolytes is unfavorably low, plausibly due to limited ion diffusion between the MXene layers. Herein, protonated g-C3N4 (pg-C3N4) is incorporated into the Ti3C2Tx electrode by using a facile self-assembling process and annealing, which results in increased interlayer d-spacing and electrical conductivity of the composite electrode. As a result, the annealed Ti3C2Tx/pg-C3N4 film revealed an enhanced ion-accessibility and gravimetric capacitance of 140 F g(-1) in 1 M aqueous MgSO4 electrolyte. The cyclic stability test also indicates excellent capacitance retention, with negligible loss of capacitance over 10000 cycles.
引用
收藏
页码:22256 / 22264
页数:9
相关论文
共 69 条
[1]   Characterizing Electronic Structure near the Energy Gap of Graphitic Carbon Nitride Based on Rational Interpretation of Chemical Analysis [J].
Akaike, Kouki ;
Aoyama, Kenichi ;
Dekubo, Shunsuke ;
Onishi, Akira ;
Kanai, Kaname .
CHEMISTRY OF MATERIALS, 2018, 30 (07) :2341-2352
[2]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[3]   Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques [J].
Alwin, Emilia ;
Nowicki, Waldemar ;
Wojcieszak, Robert ;
Zielinski, Michal ;
Pietrowski, Mariusz .
DALTON TRANSACTIONS, 2020, 49 (36) :12805-12813
[4]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[5]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[6]   One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry [J].
Benchakar, Mohamed ;
Loupias, Lola ;
Garnero, Cyril ;
Bilyk, Thomas ;
Morais, Claudia ;
Canaff, Christine ;
Guignard, Nadia ;
Morisset, Sophie ;
Pazniak, Hanna ;
Hurand, Simon ;
Chartier, Patrick ;
Pacaud, Jerome ;
Mauchamp, Vincent ;
Barsoum, Michel W. ;
Habrioux, Aurelien ;
Celerier, Stephane .
APPLIED SURFACE SCIENCE, 2020, 530
[7]   Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Hellstern, Thomas R. ;
Kibsgaard, Jakob ;
Chakthranont, Pongkarn ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2014, 4 (11) :3957-3971
[8]   Tailoring porosity in carbon materials for supercapacitor applications [J].
Borchardt, L. ;
Oschatz, M. ;
Kaskel, S. .
MATERIALS HORIZONS, 2014, 1 (02) :157-168
[9]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[10]   Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction [J].
Fu, Xiaorui ;
Hu, Xiaofei ;
Yan, Zhenhua ;
Lei, Kaixiang ;
Li, Fujun ;
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL COMMUNICATIONS, 2016, 52 (08) :1725-1728