An intelligent hybrid deep learning model for rolling bearing remaining useful life prediction

被引:7
|
作者
Deng, Linfeng [1 ]
Li, Wei [1 ]
Yan, Xinhui [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearings; remaining useful life prediction; continuous wavelet transform; deep autoregressive model; Transformer;
D O I
10.1080/10589759.2024.2385074
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Remaining Useful Life (RUL) prediction of rolling bearings is one of the intricate and important issues for equipment intelligent maintenance and health management. Various machine learning models and methods have been applied to rolling bearing RUL prediction. However, a single model cannot effectively extract state information and obtain accurate prediction results, and its generalisation is not stable under the condition of small sample data. Therefore this paper proposes an intelligent hybrid deep learning model for achieving accurate RUL prediction of rolling bearings. Firstly, the one-dimensional vibration signal is transformed into the corresponding two-dimensional time-frequency diagram via Continuous Wavelet Transform (CWT). Secondly, the diagram is input into a Multilayer Perceptron (MLP) consisting of a basic three-layer feed-forward network to obtain a one-dimensional feature vector. And lastly, the obtained feature vector is input into an integrated model based on Deep Autoregressive and Transformer to produce the probability distribution and obtain the prediction results of rolling bearing RUL. Extensive experiments on two rolling bearing datasets show that the proposed model outperforms six other comparative models in extracting bearing fault features and predicting bearing RUL, which demonstrates that the proposed model can effectively extract bearing fault features and accurately predict bearing remaining useful life.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Intelligent prediction of rolling bearing remaining useful life based on probabilistic DeepAR-Transformer model
    Deng, Linfeng
    Li, Wei
    Zhang, Weiqiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [2] A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model
    Xu, Zifei
    Bashir, Musa
    Liu, Qinsong
    Miao, Zifan
    Wang, Xinyu
    Wang, Jin
    Ekere, Nduka
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 176
  • [3] Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing
    Dong, Shaojiang
    Xiao, Jiafeng
    Hu, Xiaolin
    Fang, Nengwei
    Liu, Lanhui
    Yao, Jinbao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [4] SRCAE-STCBiGRU: a fused deep learning model for remaining useful life prediction of rolling bearings
    Deng, Linfeng
    Yan, Xinhui
    Li, Wei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (12) : 9119 - 9140
  • [5] Multi-bearing remaining useful life collaborative prediction: A deep learning approach
    Ren, Lei
    Cui, Jin
    Sun, Yaqiang
    Cheng, Xuejun
    JOURNAL OF MANUFACTURING SYSTEMS, 2017, 43 : 248 - 256
  • [6] A weighted time embedding transformer network for remaining useful life prediction of rolling bearing
    Zhang, Mingyuan
    He, Chen
    Huang, Chengxuan
    Yang, Jianhong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [7] Deep multiscale feature fusion network with dual attention for rolling bearing remaining useful life prediction
    Yang, Yingming
    Wang, Zhihai
    Liu, Xiaoqin
    Liu, Tao
    Luo, Zhuopeng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
    Chen, Yuanhang
    Peng, Gaoliang
    Zhu, Zhiyu
    Li, Sijue
    APPLIED SOFT COMPUTING, 2020, 86
  • [9] Remaining Useful Life Prediction of Rolling Element Bearings Based on Hybrid Drive of Data and Model
    Wang, Xin
    Cui, Lingli
    Wang, Huaqing
    IEEE SENSORS JOURNAL, 2022, 22 (17) : 16985 - 16993
  • [10] Rolling bearing remaining useful life prediction based on dilated causal convolutional DenseNet and an exponential model
    Ding, Wanmeng
    Li, Jimeng
    Mao, Weilin
    Meng, Zong
    Shen, Zhongjie
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 232