Identities of Hecke-Kiselman monoids

被引:0
作者
Wiertel, Magdalena [1 ]
机构
[1] Univ Warsaw, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
关键词
Hecke-Kiselman monoid; Finite oriented graph; Monoid; Semigroup identity; Semigroup algebra;
D O I
10.1007/s00233-024-10451-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the Hecke-Kiselman monoid HK Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HK}}_{\Theta }$$\end{document} associated to a finite oriented graph Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document} satisfies a semigroup identity if and only if HK Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HK}}_{\Theta }$$\end{document} does not have free noncommutative subsemigroups. It follows that this happens exactly when the semigroup algebra K[HK Theta]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[{\text {HK}}_{\Theta }]$$\end{document} over a field K satisfies a polynomial identity. The latter is equivalent to a condition expressed in terms of the graph Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document}. The proof allows to derive concrete identities satisfied by such monoids HK Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HK}}_{\Theta }$$\end{document}.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 24 条
[1]  
Ananin AZ., 1989, RING THEORY, P31
[2]  
[Anonymous], 1953, Ivanov. Gos. Ped. Inst. Uc. Zap. Fiz.-Mat. Nauki
[3]   Normal form in Hecke-Kiselman monoids associated with simple oriented graphs [J].
Aragona, R. ;
D'Andrea, A. .
ALGEBRA AND DISCRETE MATHEMATICS, 2020, 30 (02) :161-171
[4]   Hecke-Kiselman monoids of small cardinality [J].
Aragona, Riccardo ;
D'Andrea, Alessandro .
SEMIGROUP FORUM, 2013, 86 (01) :32-40
[5]   THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS [J].
Ashikhmin, D. N. ;
Volkov, M. V. ;
Zhang, Wen Ting .
DEMONSTRATIO MATHEMATICA, 2015, 48 (04) :475-492
[6]  
Clifford A.H., 1964, The Algebraic Theory of Semigroups, Mathematical Surveys and Monographs, VVol. 7.I.
[7]   A graph-dynamical interpretation of Kiselman's semigroups [J].
Collina, Elena ;
D'Andrea, Alessandro .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (04) :1115-1132
[8]  
Denton T., 2011, ARXIV
[9]  
Forsberg L., 2017, ARXIV
[10]  
Ganyushkin O, 2011, INT ELECTRON J ALGEB, V10, P174