Modulating Thermal Conductivity via Targeted Phonon Excitation

被引:8
|
作者
Wan, Xiao [1 ]
Pan, Dongkai [1 ]
Zong, Zhicheng [1 ]
Qin, Yangjun [1 ]
Lu, Jing-Tao [2 ,3 ]
Volz, Sebastian [4 ,5 ]
Zhang, Lifa [6 ]
Yang, Nuo [1 ,7 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[4] Univ Tokyo, LIMMS, CNRS, UMI 2820,IIS, Tokyo 1538505, Japan
[5] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[6] Nanjing Normal Univ, Inst Phys Frontiers & Interdisciplinary Sci, Phonon Engn Res Ctr Jiangsu Prov,Sch Phys & Tech, Phonon Engn Res Ctr Jiangsu Prov,Sch Phys & Techno, Nanjing 210023, Peoples R China
[7] Natl Univ Def Technol, Dept Phys, Changsha 410073, Peoples R China
关键词
Thermal conductivity; Graphene; Graphene nanoribbon; Phonon; TRANSPORT; GRAPHENE; MODEL; LEAD;
D O I
10.1021/acs.nanolett.4c00478
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal conductivity is a critical material property in numerous applications, such as those related to thermoelectric devices and heat dissipation. Effectively modulating thermal conductivity has become a great concern in the field of heat conduction. Here, a quantum modulation strategy is proposed to modulate the thermal conductivity/heat flux by exciting targeted phonons. It shows that the thermal conductivity of graphene can be tailored in the range of 1559 W m(-1) K-1 (decreased to 49%) to 4093 W m(-1) K-1 (increased to 128%), compared with the intrinsic value of 3189 W m(-1) K-1. The effects are also observed for graphene nanoribbons and bulk silicon. The results are obtained through both density functional theory calculations and molecular dynamics simulations. This novel modulation strategy may pave the way for quantum heat conduction.
引用
收藏
页码:6889 / 6896
页数:8
相关论文
共 50 条
  • [1] The Phonon Thermal Conductivity of Single-Layer Graphene From Complete Phonon Dispersion Relations
    Gu, Yunfeng
    Ni, Zhonghua
    Chen, Minhua
    Bi, Kedong
    Chen, Yunfei
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (06):
  • [2] Phonon thermal conductivity of graphene
    Jacimovski, Stevo K.
    Bukurov, Masa
    Setrajcic, Jovan P.
    Rakovic, Dejan I.
    SUPERLATTICES AND MICROSTRUCTURES, 2015, 88 : 330 - 337
  • [3] Modulating the thermal conductivity of silicon nanowires via surface amorphization
    Liu XiangJun
    Zhang Gang
    Pei QingXiang
    Zhang YongWei
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (04) : 699 - 705
  • [4] Modulating thermal conduction via phonon spectral coupling
    Malhotra, Abhinav
    Kothari, Kartik
    Maldovan, Martin
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (12)
  • [5] Effects of inherent phonon scattering mechanisms on the lattice thermal conductivity of graphene
    Chen, Junjie
    DIAMOND AND RELATED MATERIALS, 2023, 131
  • [6] The most crucial factor on the thermal conductivity of metal-water nanofluids: Match degree of the phonon density of state
    Jin, Xiao
    Guan, Haoqiang
    Wang, Ruijin
    Huang, Lizhong
    Shao, Chun
    POWDER TECHNOLOGY, 2022, 412
  • [7] Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties
    Dheeraj, K. V. S.
    Kannam, Sridhar Kumar
    Sathian, Sarith P.
    NANOTECHNOLOGY, 2020, 31 (34)
  • [8] Phonons and Phonon Thermal Conductivity in Silicon Nano layers
    Cocemasov, Alexandr I.
    Nika, Denis L.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (04) : 370 - 375
  • [9] Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes
    Zhang, Zhongwei
    Hu, Shiqian
    Nakayama, Tsuneyoshi
    Chen, Jie
    Li, Baowen
    CARBON, 2018, 139 : 289 - 298
  • [10] Thermal conductivity and spectral phonon properties of freestanding and supported silicene
    Wang, Zuyuan
    Feng, Tianli
    Ruan, Xiulin
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (08)