The electron-donating effect of pyridinic N sites in covalent triazine frameworks on the molecular ruthenium catalyzing CO2 hydrogenation to formate

被引:0
作者
Luo, Maowei [1 ]
Zhang, Pengfei [1 ]
Zhou, Xu [2 ]
Ran, Zepeng [2 ]
Zhang, Ping [2 ]
Sui, Ran [2 ]
Fan, Zhu [2 ]
Wu, Minghao [2 ]
Hu, Xiaowei [1 ]
Wang, Shengping [1 ,3 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Purificat Equipment Res Inst CSIC, Handan 056027, Peoples R China
[3] Ningxia Univ, Sch Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
来源
MOLECULAR CATALYSIS | 2024年 / 562卷
基金
中国国家自然科学基金;
关键词
Pyridinic n; CTFs; DFT calculations; CO2; activation; Formate; CARBON-DIOXIDE HYDROGENATION; FORMIC-ACID; CATALYTIC-HYDROGENATION; SELECTIVE OXIDATION; MECHANISTIC INSIGHT; ORGANIC FRAMEWORKS; CONVERSION; COMPLEXES; METHANOL; PROTON;
D O I
10.1016/j.mcat.2024.114213
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, molecular ruthenium (Ru3+) was immobilized onto pyridine-functionalized covalent triazine frameworks (CTFs) to catalyze the hydrogenation of CO2 to formate efficiently. The energy barrier for this process on N3-Ru, coordinated by both pyridinic N and triazinic-N, was found to be 29.91 kcal/mol, significantly lower than the 38.07 kcal/mol on N2-Ru, coordinated only by triazinic-N. Increasing the content of pyridine ring in the catalyst (RuCl3@CTF-1<RuCl3@CTF-2< RuCl3@CTF-3) led to a higher ratio of N3-Ru to N2-Ru. The higher the N3-Ru content, the denser the electron cloud density of Ru species, favoring Ru-H nucleophilic attack on C atoms in CO2, as confirmed by XPS. RuCl3@CTF-3, with the highest content of N3-Ru structure, exhibited the best performance (TOF=1274 h(-)(1) at 120 degrees C, 6 Mpa) and the lowest apparent activation energy (Ea=36.53 KJ<middle dot>mol(-1)) in CO2 hydrogenation, consistent with DFT calculations.
引用
收藏
页数:10
相关论文
共 90 条
  • [1] Iridium catalyzed hydrogenation of CO2 under basic conditions-Mechanistic insight from theory
    Ahlquist, Marten S. G.
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2010, 324 (1-2) : 3 - 8
  • [2] Rh/ZrO2@C(MIL) catalytic activity and TEM images. CO2 conversion performance and structural systematic evaluation of novel catalysts derived from Zr-MOF metallated with Ru, Rh, Pd or In
    Alqarni, Dalal S.
    Marshall, Marc
    Gengenbach, Thomas R.
    Lippi, Renata
    Chaffee, Alan L.
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 336
  • [3] Molecular Iridium Complexes in Metal-Organic Frameworks Catalyze CO2 Hydrogenation via Concerted Proton and Hydride Transfer
    An, Bing
    Zeng, Lingzhen
    Jia, Mei
    Li, Zhe
    Lin, Zekai
    Song, Yang
    Zhou, Yang
    Cheng, Jun
    Wang, Cheng
    Lin, Wenbin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (49) : 17747 - 17750
  • [4] Base-Free Aqueous-Phase Oxidation of 5-Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks
    Artz, Jens
    Palkovits, Regina
    [J]. CHEMSUSCHEM, 2015, 8 (22) : 3832 - 3838
  • [5] Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media
    Badiei, Yosra M.
    Wang, Wan-Hui
    Hull, Jonathan F.
    Szalda, David J.
    Muckerman, James T.
    Himeda, Yuichiro
    Fujita, Etsuko
    [J]. INORGANIC CHEMISTRY, 2013, 52 (21) : 12576 - 12586
  • [6] New mechanism insight for the hydrogenation of CO/CO2 gas mixtures to hydrocarbons over iron-based catalyst
    Badoga, Sandeep
    Martinelli, Michela
    Gnanamani, Muthu Kumaran
    Koh, Young
    Shafer, Wilson D.
    [J]. CATALYSIS COMMUNICATIONS, 2021, 152
  • [7] Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions
    Bai, Shao-Tao
    De Smet, Gilles
    Liao, Yuhe
    Sun, Ruiyan
    Zhou, Cheng
    Beller, Matthias
    Maes, Bert U. W.
    Sels, Bert F.
    [J]. CHEMICAL SOCIETY REVIEWS, 2021, 50 (07) : 4259 - 4298
  • [8] Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst
    Bavykina, A. V.
    Goesten, M. G.
    Kapteijn, F.
    Makkee, M.
    Gascon, J.
    [J]. CHEMSUSCHEM, 2015, 8 (05) : 809 - 812
  • [9] DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR
    BECKE, AD
    [J]. PHYSICAL REVIEW A, 1988, 38 (06): : 3098 - 3100
  • [10] Heterogeneous Formic Acid Production by Hydrogenation of CO2 Catalyzed by Ir-bpy Embedded in Polyphenylene Porous Organic Polymers
    Bennedsen, Niklas R.
    Christensen, David B.
    Mortensen, Rasmus L.
    Wang, Bolun
    Wang, Ryan
    Kramer, Soren
    Kegnaes, Soren
    [J]. CHEMCATCHEM, 2021, 13 (07) : 1781 - 1786