Graphs with a given conditional diameter that maximize the Wiener index

被引:0
作者
An, Junfeng [1 ]
Tian, Yingzhi [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
Wiener index; diameter; conditional diameter; TREES; DISTANCES; SUM;
D O I
10.3934/math.2024770
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W ( G ) of a graph G is one of the most well-known topological indices, which is defined as the sum of distances between all pairs of vertices of G . The diameter D ( G ) of G is the maximum distance between all pairs of vertices of G , and the conditional diameter D ( G ; s ) is the maximum distance between all pairs of vertex subsets with cardinality s of G . When s = 1, the conditional diameter D ( G ; s ) is just the diameter D ( G ). The authors in [18] characterized the graphs with the maximum Wiener index among all graphs with diameter D ( G ) = n - c , where 1 < c < 4. In this paper, we will characterize the graphs with the maximum Wiener index among all graphs with conditional diameter D ( G ; s ) = n - 2 s - c ( - 1 < c < 1), which extends partial results above.
引用
收藏
页码:15928 / 15936
页数:9
相关论文
共 22 条
[1]  
Bai M. L., 2024, J. Xinjiang Univ., V41, P218, DOI [10.13568/j.cnki.651094.651316.2023.04.13.0002, DOI 10.13568/J.CNKI.651094.651316.2023.04.13.0002]
[2]  
Bondy A., 2008, Graph Theory, DOI [DOI 10.1007/978-1-84628-970-5, 10.1007/978-1-84628-970-5]
[3]   Sum of weighted distances in trees [J].
Cai, Qingqiong ;
Li, Tao ;
Shi, Yongtang ;
Wang, Hua .
DISCRETE APPLIED MATHEMATICS, 2019, 257 :67-84
[4]   Corrigendum on Wiener index, Zagreb Indices and Harary index of Eulerian graphs [J].
Cambie, Stijn .
DISCRETE APPLIED MATHEMATICS, 2024, 347 :139-142
[5]   Extremal total distance of graphs of given radius I [J].
Cambie, Stijn .
JOURNAL OF GRAPH THEORY, 2021, 97 (01) :104-122
[6]   An asymptotic resolution of a problem of Plesnik [J].
Cambie, Stijn .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 :341-358
[7]   On maximum Wiener index of trees and graphs with given radius [J].
Das, Kinkar Ch ;
Nadjafi-Arani, M. J. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) :574-587
[8]  
DelaViña E, 2008, ELECTRON J COMB, V15
[9]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[10]  
Jin YL, 2013, Arxiv, DOI [arXiv:1304.0873, 10.48550/arXiv.1304.0873, DOI 10.48550/ARXIV.1304.0873]