Non-negative consistency affinity graph learning for unsupervised feature selection and clustering

被引:0
作者
Xu, Ziwei [1 ]
Jiang, Luxi [2 ]
Zhu, Xingyu [3 ]
Chen, Xiuhong [2 ]
机构
[1] Wuxi Vocat Coll Sci & Technol, Sch Internet Things & Artificial Intelligence, Wuxi, Jiangsu, Peoples R China
[2] JiangNan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised learning; Feature selection; Low -rank representation; Indicator matrix; Nonnegative constraint; Symmetric constraint; LOW-RANK REPRESENTATION; SPARSE; CLASSIFICATION; ALGORITHM; ROBUST; SEGMENTATION; REDUCTION; RULES;
D O I
10.1016/j.engappai.2024.108784
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection plays a crucial role in data mining and pattern recognition tasks. This paper proposes an efficient method for robust unsupervised feature selection, called joint local preserving and low-rank representation with nonnegative and symmetric constraint (JLPLRNS). This approach utilizes an indicator matrix instead of the row sparsity of the projection matrix to directly select some significant features from the original data and adaptively preserves the local geometric structure of original data into the low-dimensional embedded feature subspace via learned indicator matrix. By simultaneously imposing nonnegative symmetric and low-rank constraints on the representation coefficient matrix, it cannot only make this matrix discriminative, sparse and weight consistency for each pair of data, but also uncover the global structure of original data. These effectively will improve clustering performance. An algorithm based on the augmented Lagrange multiplier method with an alternating direction strategy is designed to resolve this model. Experimental results on various real datasets show that the proposed method can effectively identify some important features in data and outperforms many state-of-the-art unsupervised feature selection methods in terms of clustering performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Graph Regularized Sparse Non-Negative Matrix Factorization for Clustering
    Deng, Ping
    Li, Tianrui
    Wang, Hongjun
    Wang, Dexian
    Horng, Shi-Jinn
    Liu, Rui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 910 - 921
  • [22] Graph regularized sparse non-negative matrix factorization for clustering
    Deng, Ping
    Wang, Hongjun
    Li, Tianrui
    Zhao, Hui
    Wu, Yanping
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 987 - 994
  • [23] Sparse Graph Embedding Unsupervised Feature Selection
    Wang, Shiping
    Zhu, William
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (03): : 329 - 341
  • [24] A graph theoretic approach for unsupervised feature selection
    Moradi, Parham
    Rostami, Mehrdad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 44 : 33 - 45
  • [25] A factor graph model for unsupervised feature selection
    Wang, Hongjun
    Zhang, Yinghui
    Zhang, Ji
    Li, Tianrui
    Peng, Lingxi
    INFORMATION SCIENCES, 2019, 480 : 144 - 159
  • [26] Unsupervised Discriminative Feature Selection via Contrastive Graph Learning
    Zhou, Qian
    Wang, Qianqian
    Gao, Quanxue
    Yang, Ming
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 972 - 986
  • [27] Joint learning of fuzzy embedded clustering and non-negative spectral clustering
    Ye, Wujian
    Wang, Jiada
    Cai, Yongda
    Liu, Yijun
    Zhou, Huihui
    Chang, Chin-chen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (25) : 66065 - 66086
  • [28] Learning a Joint Affinity Graph for Multiview Subspace Clustering
    Tang, Chang
    Zhu, Xinzhong
    Liu, Xinwang
    Li, Miaomiao
    Wang, Pichao
    Zhang, Changqing
    Wang, Lizhe
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (07) : 1724 - 1736
  • [29] Graph Regularized Non-Negative Low-Rank Matrix Factorization for Image Clustering
    Li, Xuelong
    Cui, Guosheng
    Dong, Yongsheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (11) : 3840 - 3853
  • [30] Graph-based unsupervised feature selection and multiview clustering for microarray data
    Tripti Swarnkar
    Pabitra Mitra
    Journal of Biosciences, 2015, 40 : 755 - 767