Precision magnetometry exploiting excited state quantum phase transitions

被引:0
作者
Wang, Qian [1 ,2 ,3 ]
Marzolino, Ugo [3 ,4 ,5 ]
机构
[1] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[2] Univ Maribor, CAMTP Ctr Appl Math & Theoret Phys, Mladinska 3, SI-2000 Maribor, Slovenia
[3] Natl Inst Nucl Phys, Trieste Unit, I-34151 Trieste, Italy
[4] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[5] Univ Trieste, I-34127 Trieste, Italy
基金
美国国家科学基金会;
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; EXPERIMENTAL REALIZATION; ALGORITHM; ENTANGLEMENT; VALIDITY; EIGENVALUES; PROPAGATION;
D O I
10.21468/SciPostPhys.17.2.043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Critical behaviour in phase transitions is a resource for enhanced precision metrology. The reason is that the function, known as Fisher information, is superextensive at critical points, and, at the same time, quantifies performances of metrological protocols. Therefore, preparing metrological probes at phase transitions provides enhanced precision in measuring the transition control parameter. We focus on the Lipkin-Meshkov-Glick model that exhibits excited state quantum phase transitions at different magnetic fields. Resting on the model spectral properties, we show broad peaks of the Fisher information, and propose efficient schemes for precision magnetometry. The Lipkin-Meshkov-Glick model was first introduced for superconductivity and for nuclear systems, and recently realised in several condensed matter platforms. The above metrological schemes can be also exploited to measure microscopic properties of systems able to simulate the LipkinMeshkov-Glick model.
引用
收藏
页数:33
相关论文
共 115 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]  
Akahira M., 1995, Non-regular statistical estimation, DOI [10.1007/978-1-4612-2554-6, DOI 10.1007/978-1-4612-2554-6]
[3]   Ultimate limits for quantum magnetometry via time-continuous measurements [J].
Albarelli, Francesco ;
Rossi, Matteo A. C. ;
Paris, Matteo G. A. ;
Genoni, Marco G. .
NEW JOURNAL OF PHYSICS, 2017, 19
[4]  
[Anonymous], 1962, Quantum Mechanics
[5]  
[Anonymous], 1982, Probabilistic and Statistical Aspects of Quantum Theory Amsterdam
[6]  
[Anonymous], QUANTUM DETECTION ES
[7]   Quantum information-geometry of dissipative quantum phase transitions [J].
Banchi, Leonardo ;
Giorda, Paolo ;
Zanardi, Paolo .
PHYSICAL REVIEW E, 2014, 89 (02)
[8]   ON FIELD THEORIES WITH DEGENERATE GROUND STATES [J].
BAUMANN, K ;
EDER, G ;
SEXL, R ;
THIRRING, W .
ANNALS OF PHYSICS, 1961, 16 (01) :14-25
[9]   Open quantum dynamics: Complete positivity and entanglement [J].
Benatti, F ;
Floreanini, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (19) :3063-3139
[10]  
Benenti G., 2018, Principles of Quantum Computation and Information, DOI DOI 10.1142/10909